A computer virus is a type of malware that, when executed, replicates itself by modifying other computer programs and Code injection its own code into those programs. If this replication succeeds, the affected areas are then said to be "infected" with a computer virus, a metaphor derived from biological Virus.
Computer viruses generally require a Computer program. The virus writes its own code into the host program. When the program runs, the written virus program is executed first, causing infection and damage. By contrast, a computer worm does not need a host program, as it is an independent program or code chunk. Therefore, it is not restricted by the Computer program, but can run independently and actively carry out attacks.
Virus writers use social engineering and exploit detailed knowledge of security vulnerabilities to initially infect systems and to spread the virus. Viruses use complex anti-detection/stealth strategies to evade antivirus software. Motives for creating viruses can include seeking income (e.g., with ransomware), desire to send a political message, personal amusement, to demonstrate that a vulnerability exists in software, for sabotage and denial of service, or simply because they wish to explore cybersecurity issues, artificial life and evolutionary algorithms.
Computer viruses cause billions of dollars' worth of economic damage each year. In response, an industry of antivirus software has cropped up, selling or freely distributing virus protection to users of various .
The article describes a fully functional virus written in assembler programming language for a SIEMENS 4004/35 computer system. In 1980, Jürgen Kraus wrote his Diplom thesis "Selbstreproduktion bei Programmen" (Self-reproduction of programs) at the University of Dortmund. In his work Kraus postulated that computer programs can behave in a way similar to biological viruses.
The Creeper virus was first detected on ARPANET, the forerunner of the Internet, in the early 1970s. Creeper was an experimental self-replicating program written by Bob Thomas at BBN Technologies in 1971. Creeper used the ARPANET to infect DEC PDP-10 computers running the TENEX operating system. Creeper gained access via the ARPANET and copied itself to the remote system where the message, "I'M THE CREEPER. CATCH ME IF YOU CAN!" was displayed. The Reaper program was created to delete Creeper.
In 1982, a program called "Elk Cloner" was the first personal computer virus to appear "in the wild"—that is, outside the single computer or computer lab where it was created. Written in 1981 by Richard Skrenta, a ninth grader at Mount Lebanon High School near Pittsburgh, it attached itself to the Apple DOS 3.3 operating system and spread via floppy disk. On its 50th use the Elk Cloner virus would be activated, infecting the personal computer and displaying a short poem beginning "Elk Cloner: The program with a personality."
In 1984, Fred Cohen from the University of Southern California wrote his paper "Computer Viruses – Theory and Experiments". It was the first paper to explicitly call a self-reproducing program a "virus", a term introduced by Cohen's mentor Leonard Adleman. In 1987, Fred Cohen published a demonstration that there is no algorithm that can perfectly detect all possible viruses.Cohen, Fred, An Undetectable Computer Virus , 1987, IBM Fred Cohen's theoretical compression virusBurger, Ralph, 1991. Computer Viruses and Data Protection, pp. 19–20 was an example of a virus which was not malicious software (malware), but was putatively benevolent (well-intentioned). However, antivirus professionals do not accept the concept of "benevolent viruses", as any desired function can be implemented without involving a virus (automatic compression, for instance, is available under Windows at the choice of the user). Any virus will by definition make unauthorised changes to a computer, which is undesirable even if no damage is done or intended. The first page of Dr Solomon's Virus Encyclopaedia explains the undesirability of viruses, even those that do nothing but reproduce.
An article that describes "useful virus functionalities" was published by J. B. Gunn under the title "Use of virus functions to provide a virtual APL interpreter under user control" in 1984. The first IBM PC compatible virus in the "wild" was a boot sector virus dubbed (c)Brain, created in 1986 and was released in 1987 by Amjad Farooq Alvi and Basit Farooq Alvi in Lahore, reportedly to deter unauthorized copying of the software they had written. The first virus to specifically target Microsoft Windows, WinVir was discovered in April 1992, two years after the release of Windows 3.0. The virus did not contain any Windows API calls, instead relying on DOS API. A few years later, in February 1996, Australian hackers from the virus-writing crew VLAD created the Bizatch virus (also known as "Boza" virus), which was the first known virus to target Windows 95. In late 1997 the encrypted, memory-resident stealth virus Win32.Cabanas was released—the first known virus that targeted Windows NT (it was also able to infect Windows 3.0 and Windows 9x hosts).
Even were affected by viruses. The first one to appear on the Amiga was a boot sector virus called SCA virus, which was detected in November 1987.
A memory-resident virus (or simply "resident virus") installs itself as part of the operating system when executed, after which it remains in RAM from the time the computer is booted up to when it is shut down. Resident viruses overwrite interrupt handling code or other functions, and when the operating system attempts to access the target file or disk sector, the virus code intercepts the request and redirects the control flow to the replication module, infecting the target. In contrast, a non-memory-resident virus (or "non-resident virus"), when executed, scans the disk for targets, infects them, and then exits (i.e. it does not remain in memory after it is done executing).
Many common applications, such as Microsoft Outlook and Microsoft Word, allow macro programs to be embedded in documents or emails, so that the programs may be run automatically when the document is opened. A macro virus (or "document virus") is a virus that is written in a macro language and embedded into these documents so that when users open the file, the virus code is executed, and can infect the user's computer. This is one of the reasons that it is dangerous to open unexpected or suspicious attachments in . While not opening attachments in e-mails from unknown persons or organizations can help to reduce the likelihood of contracting a virus, in some cases, the virus is designed so that the e-mail appears to be from a reputable organization (e.g., a major bank or credit card company).
Boot sector viruses specifically target the boot sector and/or the Master Boot Record (MBR) of the host's hard disk drive, solid-state drive, or removable storage media (flash drives, floppy disks, etc.).
The most common way of transmission of computer viruses in boot sector is physical media. When reading the VBR of the drive, the infected floppy disk or USB flash drive connected to the computer will transfer data, and then modify or replace the existing boot code. The next time a user tries to start the desktop, the virus will immediately load and run as part of the master boot record.
Email viruses are viruses that intentionally, rather than accidentally, use the email system to spread. While virus infected files may be accidentally sent as , email viruses are aware of email system functions. They generally target a specific type of email system (Microsoft Outlook is the most commonly used), harvest email addresses from various sources, and may append copies of themselves to all email sent, or may generate email messages containing copies of themselves as attachments.
The only reliable method to avoid "stealth" viruses is to boot from a medium that is known to be "clear". Security software can then be used to check the dormant operating system files. Most security software relies on virus signatures, or they employ heuristics. Security software may also use a database of file "hashes" for Windows OS files, so the security software can identify altered files, and request Windows installation media to replace them with authentic versions. In older versions of Windows, file cryptographic hash functions of Windows OS files stored in Windows—to allow file integrity/authenticity to be checked—could be overwritten so that the System File Checker would report that altered system files are authentic, so using file hashes to scan for altered files would not always guarantee finding an infection.
One method of evading signature detection is to use simple encryption to encipher (encode) the body of the virus, leaving only the encryption module and a static cryptographic key in cleartext which does not change from one infection to the next. In this case, the virus consists of a small decrypting module and an encrypted copy of the virus code. If the virus is encrypted with a different key for each infected file, the only part of the virus that remains constant is the decrypting module, which would (for example) be appended to the end. In this case, a virus scanner cannot directly detect the virus using signatures, but it can still detect the decrypting module, which still makes indirect detection of the virus possible. Since these would be symmetric keys, stored on the infected host, it is entirely possible to decrypt the final virus, but this is probably not required, since self-modifying code is such a rarity that finding some may be reason enough for virus scanners to at least "flag" the file as suspicious. An old but compact way will be the use of arithmetic operation like addition or subtraction and the use of logical conditions such as Exclusive or, where each byte in a virus is with a constant so that the exclusive-or operation had only to be repeated for decryption. It is suspicious for a code to modify itself, so the code to do the encryption/decryption may be part of the signature in many virus definitions. A simpler older approach did not use a key, where the encryption consisted only of operations with no parameters, like incrementing and decrementing, bitwise rotation, arithmetic negation, and logical NOT. Some viruses, called polymorphic viruses, will employ a means of encryption inside an executable in which the virus is encrypted under certain events, such as the virus scanner being disabled for updates or the computer being rebooted. This is called cryptovirology.
Polymorphic code was the first technique that posed a serious threat to virus scanners. Just like regular encrypted viruses, a polymorphic virus infects files with an encrypted copy of itself, which is decoded by a decryption module. In the case of polymorphic viruses, however, this decryption module is also modified on each infection. A well-written polymorphic virus therefore has no parts which remain identical between infections, making it very difficult to detect directly using "signatures". Antivirus software can detect it by decrypting the viruses using an emulator, or by statistical pattern analysis of the encrypted virus body. To enable polymorphic code, the virus has to have a polymorphic engine (also called "mutating engine" or "mutation engine") somewhere in its encrypted body. See polymorphic code for technical detail on how such engines operate.
Some viruses employ polymorphic code in a way that constrains the mutation rate of the virus significantly. For example, a virus can be programmed to mutate only slightly over time, or it can be programmed to refrain from mutating when it infects a file on a computer that already contains copies of the virus. The advantage of using such slow polymorphic code is that it makes it more difficult for antivirus professionals and investigators to obtain representative samples of the virus, because "bait" files that are infected in one run will typically contain identical or similar samples of the virus. This will make it more likely that the detection by the virus scanner will be unreliable, and that some instances of the virus may be able to avoid detection.
To avoid being detected by emulation, some viruses rewrite themselves completely each time they are to infect new executables. Viruses that utilize this technique are said to be in metamorphic code. To enable metamorphism, a "metamorphic engine" is needed. A metamorphic virus is usually very large and complex. For example, W32/Simile consisted of over 14,000 lines of assembly language code, 90% of which is part of the metamorphic engine.
A power virus is a computer program that executes specific machine code to reach the maximum CPU power dissipation (thermal energy output for the central processing units). Computer cooling apparatus are designed to dissipate power up to the thermal design power, rather than maximum power, and a power virus could cause the system to overheat if it does not have logic to stop the processor. This may cause permanent physical damage. Power viruses can be malicious, but are often suites of test software used for integration testing and thermal testing of computer components during the design phase of a product, or for product benchmarking.
Software testing applications are similar programs which have the same effect as power viruses (high CPU usage) but stay under the user's control. They are used for testing CPUs, for example, when overclocking. Spinlock in a poorly written program may cause similar symptoms, if it lasts sufficiently long.
Different micro-architectures typically require different machine code to hit their maximum power. Examples of such machine code do not appear to be distributed in CPU reference materials. Thermal Performance Challenges from Silicon to Systems
To replicate itself, a virus must be permitted to execute code and write to memory. For this reason, many viruses attach themselves to executable files that may be part of legitimate programs (see code injection). If a user attempts to launch an infected program, the virus' code may be executed simultaneously. In operating systems that use to determine program associations (such as Microsoft Windows), the extensions may be hidden from the user by default. This makes it possible to create a file that is of a different type than it appears to the user. For example, an executable may be created and named "picture.png.exe", in which the user sees only "picture.png" and therefore assumes that this file is a digital image and most likely is safe, yet when opened, it runs the executable on the client machine. Viruses may be installed on removable media, such as flash drives. The drives may be left in a parking lot of a government building or other target, with the hopes that curious users will insert the drive into a computer. In a 2015 experiment, researchers at the University of Michigan found that 45–98 percent of users would plug in a flash drive of unknown origin.
The vast majority of viruses target systems running Microsoft Windows. This is due to Microsoft's large market share of desktop computer users. The diversity of software systems on a network limits the destructive potential of viruses and malware. Open-source operating systems such as Linux allow users to choose from a variety of desktop environments, packaging tools, etc., which means that malicious code targeting any of these systems will only affect a subset of all users. Many Windows users are running the same set of applications, enabling viruses to rapidly spread among Microsoft Windows systems by targeting the same exploits on large numbers of hosts.
While Linux and Unix in general have always natively prevented normal users from making changes to the operating system environment without permission, Windows users are generally not prevented from making these changes, meaning that viruses can easily gain control of the entire system on Windows hosts. This difference has continued partly due to the widespread use of administrator accounts in contemporary versions like Windows XP. In 1997, researchers created and released a virus for Linux—known as "Bliss". Bliss, however, requires that the user run it explicitly, and it can only infect programs that the user has the access to modify. Unlike Windows users, most Unix users do not login as an administrator, or superuser, except to install or configure software; as a result, even if a user ran the virus, it could not harm their operating system. The Bliss virus never became widespread, and remains chiefly a research curiosity. Its creator later posted the source code to Usenet, allowing researchers to see how it worked.
Before computer networks became widespread, most viruses spread on removable media, particularly . In the early days of the personal computer, many users regularly exchanged information and programs on floppies. Some viruses spread by infecting programs stored on these disks, while others installed themselves into the disk boot sector, ensuring that they would be run when the user booted the computer from the disk, usually inadvertently. Personal computers of the era would attempt to boot first from a floppy if one had been left in the drive. Until floppy disks fell out of use, this was the most successful infection strategy and boot sector viruses were the most common in the "wild" for many years. Traditional computer viruses emerged in the 1980s, driven by the spread of personal computers and the resultant increase in bulletin board system (BBS), modem use, and software sharing. Bulletin board–driven software sharing contributed directly to the spread of Trojan horse programs, and viruses were written to infect popularly traded software. Shareware and bootleg software were equally common vectors for viruses on BBSs. Viruses can increase their chances of spreading to other computers by infecting files on a network file system or a file system that is accessed by other computers.
have become common since the mid-1990s. Most of these viruses are written in the scripting languages for Microsoft programs such as Microsoft Word and Microsoft Excel and spread throughout Microsoft Office by infecting documents and . Since Word and Excel were also available for Mac OS, most could also spread to Macintosh. Although most of these viruses did not have the ability to send infected email, those viruses which did take advantage of the Microsoft Outlook Component Object Model (COM) interface. Some old versions of Microsoft Word allow macros to replicate themselves with additional blank lines. If two macro viruses simultaneously infect a document, the combination of the two, if also self-replicating, can appear as a "mating" of the two and would likely be detected as a virus unique from the "parents".
A virus may also send a web address link as an instant message to all the contacts (e.g., friends and colleagues' e-mail addresses) stored on an infected machine. If the recipient, thinking the link is from a friend (a trusted source) follows the link to the website, the virus hosted at the site may be able to infect this new computer and continue propagating. Viruses that spread using cross-site scripting were first reported in 2002, and were academically demonstrated in 2005. There have been multiple instances of the cross-site scripting viruses in the "wild", exploiting websites such as MySpace (with the Samy worm) and Yahoo!.
Many users install antivirus software that can detect and eliminate known viruses when the computer attempts to downloading or run the executable file (which may be distributed as an email attachment, or on USB flash drives, for example). Some antivirus software blocks known malicious websites that attempt to install malware. Antivirus software does not change the underlying capability of hosts to transmit viruses. Users must update their software regularly to patch security vulnerabilities ("holes"). Antivirus software also needs to be regularly updated to recognize the latest threats. This is because malicious and other individuals are always creating new viruses. The German AV-TEST Institute publishes evaluations of antivirus software for Windows and Android.
Examples of Microsoft Windows antivirus and anti-malware software include the optional Microsoft Security Essentials (for Windows XP, Vista and Windows 7) for real-time protection, the Windows Malicious Software Removal Tool (now included with Windows Update on "Patch Tuesday", the second Tuesday of each month), and Windows Defender (an optional download in the case of Windows XP). Additionally, several capable antivirus software programs are available for free download from the Internet (usually restricted to non-commercial use). Some such free programs are almost as good as commercial
competitors. Common security vulnerabilities are assigned CVE IDs and listed in the US National Vulnerability Database. Secunia PSI is an example of software, free for personal use, that will check a PC for vulnerable out-of-date software, and attempt to update it. Ransomware and phishing scam alerts appear as press releases on the Internet Crime Complaint Center noticeboard. Ransomware is a virus that posts a message on the user's screen saying that the screen or system will remain locked or unusable until a ransom payment is made. Phishing is a deception in which the malicious individual pretends to be a friend, computer security expert, or other benevolent individual, with the goal of convincing the targeted individual to reveal or other personal information.
Other commonly used preventive measures include timely operating system updates, software updates, careful Internet browsing (avoiding shady websites), and installation of only trusted software. Certain browsers flag sites that have been reported to Google and that have been confirmed as hosting malware by Google.
There are two common methods that an antivirus software application uses to detect viruses, as described in the antivirus software article. The first, and by far the most common method of virus detection is using a list of virus signature definitions. This works by examining the content of the computer's memory (its Random Access Memory (RAM), and ) and the files stored on fixed or removable drives (hard drives, floppy drives, or USB flash drives), and comparing those files against a database of known virus "signatures". Virus signatures are just strings of code that are used to identify individual viruses; for each virus, the antivirus designer tries to choose a unique signature string that will not be found in a legitimate program. Different antivirus programs use different "signatures" to identify viruses. The disadvantage of this detection method is that users are only protected from viruses that are detected by signatures in their most recent virus definition update, and not protected from new viruses (see "zero-day attack").
A second method to find viruses is to use a heuristic algorithm based on common virus behaviors. This method can detect new viruses for which antivirus security firms have yet to define a "signature", but it also gives rise to more false positives than using signatures. False positives can be disruptive, especially in a commercial environment, because it may lead to a company instructing staff not to use the company computer system until IT services have checked the system for viruses. This can slow down productivity for regular workers.
Many websites run by antivirus software companies provide free online virus scanning, with limited "cleaning" facilities (after all, the purpose of the websites is to sell antivirus products and services). Some websites—like Google subsidiary VirusTotal.com—allow users to upload one or more suspicious files to be scanned and checked by one or more antivirus programs in one operation. Additionally, several capable antivirus software programs are available for free download from the Internet (usually restricted to non-commercial use). Microsoft offers an optional free antivirus utility called Microsoft Security Essentials, a Windows Malicious Software Removal Tool that is updated as part of the regular Windows update regime, and an older optional anti-malware (malware removal) tool Windows Defender that has been upgraded to an antivirus product in Windows 8.
Some viruses disable System Restore and other important Windows tools such as Task Manager and CMD. An example of a virus that does this is CiaDoor. Many such viruses can be removed by booting the computer, entering Windows "safe mode" with networking, and then using system tools or Microsoft Safety Scanner. System Restore on Windows Me, Windows XP, Windows Vista and Windows 7 can restore the registry and critical system files to a previous checkpoint. Often a virus will cause a system to "hang" or "freeze", and a subsequent hard reboot will render a system restore point from the same day corrupted. Restore points from previous days should work, provided the virus is not designed to corrupt the restore files and does not exist in previous restore points.
Microsoft's System File Checker (improved in Windows 7 and later) can be used to check for, and repair, corrupted system files. Restoring an earlier "clean" (virus-free) copy of the entire partition from a disc cloning, a disk image, or a backup copy is one solution—restoring an earlier backup disk "image" is relatively simple to do, usually removes any malware, and may be faster than "disinfecting" the computer—or reinstalling and reconfiguring the operating system and programs from scratch, as described below, then restoring user preferences. Reinstalling the operating system is another approach to virus removal. It may be possible to recover copies of essential user data by booting from a live CD, or connecting the hard drive to another computer and booting from the second computer's operating system, taking great care not to infect that computer by executing any infected programs on the original drive. The original hard drive can then be reformatted and the OS and all programs installed from original media. Once the system has been restored, precautions must be taken to avoid reinfection from any restored .
The idea was explored further in two 1972 novels, When HARLIE Was One by David Gerrold and The Terminal Man by Michael Crichton, and became a major theme of the 1975 novel The Shockwave Rider by John Brunner.
The 1973 Michael Crichton sci-fi film Westworld made an early mention of the concept of a computer virus, being a central plot theme that causes androids to run amok. IMDB synopsis of Westworld. Retrieved November 28, 2015. Alan Oppenheimer's character summarizes the problem by stating that "...there's a clear pattern here which suggests an analogy to an infectious disease process, spreading from one...area to the next." To which the replies are stated: "Perhaps there are superficial similarities to disease" and, "I must confess I find it difficult to believe in a disease of machinery."
Design
Parts
Phases
Targets and replication
Detection
Read request intercepts
Self-modification
Effects
Infection vectors
Countermeasures
Recovery strategies and methods
Popular culture
Other malware
See also
Notes
Further reading
External links
|
|