Botany, also called plant science, is the branch of natural science and biology studying plants, especially Plant anatomy, Plant taxonomy, and Plant ecology. Oxford English Dictionary, s.v. “ botany (n.), sense 1.a,” September 2024, " The branch of science concerned with the study of plants, esp. as observed in the field, and in their taxonomic, morphological, anatomical, and ecological aspects." A botanist or plant scientist is a scientist who specialises in this field. "Plant" and "botany" may be defined more narrowly to include only land plants and their study, which is also known as phytology. Phytologists or botanists (in the strict sense) study approximately 410,000 species of Embryophyte, including some 391,000 species of (of which approximately 369,000 are ) and approximately 20,000 .
Botany originated in prehistory as herbalism with the efforts of early humans to identify – and later cultivate – plants that were edible, poisonous, and possibly medicinal, making it one of the first endeavours of human investigation. Medieval , often attached to Monastery, contained plants possibly having medicinal benefit. They were forerunners of the first attached to University, founded from the 1540s onwards. One of the earliest was the Padua botanical garden. These gardens facilitated the academic study of plants. Efforts to catalogue and describe their collections were the beginnings of plant taxonomy and led in 1753 to the binomial system of nomenclature of Carl Linnaeus that remains in use to this day for the naming of all biological species.
In the 19th and 20th centuries, new techniques were developed for the study of plants, including methods of optical microscopy and live cell imaging, electron microscopy, analysis of ploidy, phytochemistry and the structure and function of and other . In the last two decades of the 20th century, botanists exploited the techniques of molecular genetic analysis, including genomics and proteomics and DNA sequences to classify plants more accurately.
Modern botany is a broad subject with contributions and insights from most other areas of science and technology. Research topics include the study of plant Plant morphology, cell growth and differentiation, reproduction, biochemistry and metabolism, chemical products, development, plant pathology, phylogenetics, systematics, and plant taxonomy. Dominant themes in 21st-century plant science are molecular genetics and epigenetics, which study the mechanisms and control of gene expression during differentiation of and tissues. Botanical research has diverse applications in providing staple foods, materials such as Lumber, oil, rubber, Fiber and drugs, in modern horticulture, agriculture and forestry, plant propagation, Plant breeding and genetic modification, in the synthesis of chemicals and raw materials for construction and energy production, in environmental management, and the maintenance of biodiversity.
Modern botany traces its roots back to Ancient Greece specifically to Theophrastus (–287 BCE), a student of Aristotle who invented and described many of its principles and is widely regarded in the scientific community as the "Father of Botany". His major works, Enquiry into Plants and On the Causes of Plants, constitute the most important contributions to botanical science until the Middle Ages, almost seventeen centuries later.
Another work from Ancient Greece that made an early impact on botany is De materia medica, a five-volume encyclopedia about Herbalism written in the middle of the first century by Greek physician and pharmacologist Pedanius Dioscorides. De materia medica was widely read for more than 1,500 years. Important contributions from the medieval Muslim world include Ibn Wahshiyya's Nabatean Agriculture, Abū Ḥanīfa Dīnawarī's (828–896) the Book of Plants, and Ibn Bassal's The Classification of Soils. In the early 13th century, Abu al-Abbas al-Nabati, and Ibn al-Baitar (d. 1248) wrote on botany in a systematic and scientific manner.
In the mid-16th century, were founded in a number of Italian universities. The Padua botanical garden in 1545 is usually considered to be the first which is still in its original location. These gardens continued the practical value of earlier "physic gardens", often associated with monasteries, in which plants were cultivated for suspected medicinal uses. They supported the growth of botany as an academic subject. Lectures were given about the plants grown in the gardens. Botanical gardens came much later to northern Europe; the first in England was the University of Oxford Botanic Garden in 1621.
German physician Leonhart Fuchs (1501–1566) was one of "the three German fathers of botany", along with theologian Otto Brunfels (1489–1534) and physician Hieronymus Bock (1498–1554) (also called Hieronymus Tragus). Fuchs and Brunfels broke away from the tradition of copying earlier works to make original observations of their own. Bock created his own system of plant classification.
Physician Valerius Cordus (1515–1544) authored a botanically and pharmacologically important herbal Historia Plantarum in 1544 and a pharmacopoeia of lasting importance, the Dispensatorium in 1546. Naturalist Conrad von Gesner (1516–1565) and herbalist John Gerard (1545 – ) published herbals covering the supposed medicinal uses of plants. Naturalist Ulisse Aldrovandi (1522–1605) was considered the father of natural history, which included the study of plants. In 1665, using an early microscope, Polymath Robert Hooke discovered cells (a term he coined) in cork, and a short time later in living plant tissue.
Increasing knowledge of plant anatomy, plant morphology and life cycles led to the realisation that there were more natural affinities between plants than the artificial sexual system of Linnaeus. Michel Adanson (1763), de Jussieu (1789), and Candolle (1819) all proposed various alternative natural systems of classification that grouped plants using a wider range of shared characters and were widely followed. The Candollean system reflected his ideas of the progression of morphological complexity and the later Bentham & Hooker system, which was influential until the mid-19th century, was influenced by Candolle's approach. Charles Darwin's publication of the Origin of Species in 1859 and his concept of common descent required modifications to the Candollean system to reflect evolutionary relationships as distinct from mere morphological similarity.
In the 19th century botany was a socially acceptable hobby for upper-class women. These women would collect and paint flowers and plants from around the world with scientific accuracy. The paintings were used to record many species that could not be transported or maintained in other environments. Marianne North illustrated over 900 species in extreme detail with watercolor and oil paintings. Her work and many other women's botany work was the beginning of popularizing botany to a wider audience.
Botany was greatly stimulated by the appearance of the first "modern" textbook, Matthias Schleiden's Grundzüge der Wissenschaftlichen Botanik, published in English in 1849 as Principles of Scientific Botany. Schleiden was a microscopist and an early plant anatomist who co-founded the cell theory with Theodor Schwann and Rudolf Virchow and was among the first to grasp the significance of the cell nucleus that had been described by Robert Brown in 1831. In 1855, Adolf Fick formulated Fick's laws that enabled the calculation of the rates of molecular diffusion in biological systems.
The discipline of plant ecology was pioneered in the late 19th century by botanists such as Eugenius Warming, who produced the hypothesis that plants form plant community, and his mentor and successor Christen C. Raunkiær whose system for describing plant life forms is still in use today. The concept that the composition of plant communities such as temperate broadleaf forest changes by a process of ecological succession was developed by Henry Chandler Cowles, Arthur Tansley and Frederic Clements. Clements is credited with the idea of climax vegetation as the most complex vegetation that an environment can support and Tansley introduced the concept of to biology. Building on the extensive earlier work of Alphonse de Candolle, Nikolai Vavilov (1887–1943) produced accounts of the biogeography, centres of origin, and evolutionary history of economic plants.
Particularly since the mid-1960s there have been advances in understanding of the physics of Plant physiology processes such as transpiration (the transport of water within plant tissues), the temperature dependence of rates of water evaporation from the leaf surface and the molecular diffusion of water vapour and carbon dioxide through stomatal apertures. These developments, coupled with new methods for measuring the size of stomatal apertures, and the rate of photosynthesis have enabled precise description of the rates of gas exchange between plants and the atmosphere. Innovations in Statistics by Ronald Fisher, Frank Yates and others at Rothamsted Experimental Station facilitated rational experimental design and data analysis in botanical research. The discovery and identification of the auxin plant hormones by Kenneth V. Thimann in 1948 enabled regulation of plant growth by externally applied chemicals. Frederick Campion Steward pioneered techniques of micropropagation and plant tissue culture controlled by plant hormones. The synthetic auxin 2,4-dichlorophenoxyacetic acid or 2,4-D was one of the first commercial synthetic .
20th century developments in plant biochemistry have been driven by modern techniques of organic chemical analysis, such as spectroscopy, chromatography and electrophoresis. With the rise of the related molecular-scale biological approaches of molecular biology, genomics, proteomics and metabolomics, the relationship between the plant genome and most aspects of the biochemistry, physiology, morphology and behaviour of plants can be subjected to detailed experimental analysis. The concept originally stated by Gottlieb Haberlandt in 1902 that all plant cells are totipotent and can be grown in vitro ultimately enabled the use of genetic engineering experimentally to knock out a gene or genes responsible for a specific trait, or to add genes such as GFP that reporter gene when a gene of interest is being expressed. These technologies enable the biotechnological use of whole plants or plant cell cultures grown in bioreactors to synthesise Bt corn, Biopharmaceutics or other pharmaceuticals, as well as the practical application of genetically modified crops designed for traits such as improved yield.
Modern morphology recognises a continuum between the major morphological categories of root, stem (caulome), leaf (phyllome) and trichome. Furthermore, it emphasises structural dynamics. Modern systematics aims to reflect and discover phylogenetic relationships between plants. Modern molecular phylogenetics largely ignores morphological characters, relying on DNA sequences as data. Molecular analysis of DNA sequences from most families of flowering plants enabled the Angiosperm Phylogeny Group to publish in 1998 a phylogenetics of flowering plants, answering many of the questions about relationships among angiosperm families and species. The theoretical possibility of a practical method for identification of plant species and commercial varieties by DNA barcoding is the subject of active current research.
Some subfields of botany relate to particular groups of organisms. Divisions related to the broader historical sense of botany include bacteriology, mycology (or fungology), and phycology – respectively, the study of bacteria, fungi, and algae – with lichenology as a subfield of mycology. The narrower sense of botany as the study of embryophytes (land plants) is called phytology. Bryology is the study of mosses (and in the broader sense also liverworts and hornworts). Pteridology (or filicology) is the study of ferns and allied plants. A number of other taxa of ranks varying from family to subgenus have terms for their study, including agrostology (or graminology) for the study of grasses, synantherology for the study of composites, and batology for the study of .
Study can also be divided by guild rather than clade or grade. For example, dendrology is the study of woody plants.
Many divisions of biology have botanical subfields. These are commonly denoted by prefixing the word plant (e.g. plant taxonomy, plant ecology, plant anatomy, plant morphology, plant systematics), or prefixing or substituting the prefix phyto- (e.g. phytochemistry, phytogeography). The study of fossil plants is called palaeobotany. Other fields are denoted by adding or substituting the word botany (e.g. systematic botany).
Phytosociology is a subfield of plant ecology that classifies and studies communities of plants.
The intersection of fields from the above pair of categories gives rise to fields such as bryogeography, the study of the distribution of mosses.
Different parts of plants also give rise to their own subfields, including Dendrology, carpology (or fructology), and palynology, these being the study of wood, fruit and pollen/spores respectively.
Botany also overlaps on the one hand with agriculture, horticulture and silviculture, and on the other hand with medicine and pharmacology, giving rise to fields such as agronomy, horticultural botany, phytopathology, and phytopharmacology.
Historically, all living things were classified as either animals or plants and botany covered the study of all organisms not considered animals. Botanists examine both the internal functions and processes within plant , cells, tissues, whole plants, plant populations and plant communities. At each of these levels, a botanist may be concerned with the classification (taxonomy), phylogeny and evolution, structure (Plant anatomy and Plant morphology), or function (Plant physiology) of plant life.
The strictest definition of "plant" includes only the "land plants" or embryophytes, which include seed plants (gymnosperms, including the Pinophyta, and ) and the free-sporing cryptogams including , Lycopodiopsida, Marchantiophyta, and . Embryophytes are multicellular descended from an ancestor that obtained its energy from sunlight by photosynthesis. They have life cycles with alternating haploid and diploid phases. The sexual haploid phase of embryophytes, known as the gametophyte, nurtures the developing diploid embryo sporophyte within its tissues for at least part of its life, even in the seed plants, where the gametophyte itself is nurtured by its parent sporophyte. Other groups of organisms that were previously studied by botanists include bacteria (now studied in bacteriology), fungi (mycology) – including lichen-forming fungi (lichenology), non-Chlorophyta algae (phycology), and viruses (virology). However, attention is still given to these groups by botanists, and fungi (including lichens) and photosynthetic are usually covered in introductory botany courses.
Paleobotany study ancient plants in the fossil record to provide information about the evolutionary history of plants. Cyanobacteria, the first oxygen-releasing photosynthetic organisms on Earth, are thought to have given rise to the ancestor of plants by entering into an endosymbiotic relationship with an early eukaryote, ultimately becoming the in plant cells. The new photosynthetic plants (along with their algal relatives) accelerated the rise in atmospheric oxygen started by the cyanobacteria, changing the ancient oxygen-free, Redox, atmosphere to one in which free oxygen has been abundant for more than 2 billion years.
Among the important botanical questions of the 21st century are the role of plants as primary producers in the global cycling of life's basic ingredients: energy, carbon, oxygen, nitrogen and water, and ways that our plant stewardship can help address the global environmental issues of resource management, conservation, food security, biologically invasive organisms, carbon sequestration, climate change, and sustainability.
Botanists study how plants produce food and how to increase yields, for example through plant breeding, making their work important to humanity's ability to feed the world and provide food security for future generations. Botanists also study weeds, which are a considerable problem in agriculture, and the biology and control of Plant pathology in agriculture and natural ecosystems. Ethnobotany is the study of the relationships between plants and people. When applied to the investigation of historical plant–people relationships ethnobotany may be referred to as archaeobotany or paleoethnobotany. Some of the earliest plant-people relationships arose between the indigenous people of Canada in identifying edible plants from inedible plants. This relationship the indigenous people had with plants was recorded by ethnobotanists.
Plants and various other groups of photosynthetic eukaryotes collectively known as "algae" have unique organelles known as . Chloroplasts are thought to be descended from cyanobacteria that formed endosymbiotic relationships with ancient plant and algal ancestors. Chloroplasts and cyanobacteria contain the blue-green pigment chlorophyll a. Chlorophyll a (as well as its plant and green algal-specific cousin chlorophyll b) absorbs light in the blue-violet and orange/red parts of the visible spectrum while reflecting and transmitting the green light that we see as the characteristic colour of these organisms. The energy in the red and blue light that these pigments absorb is used by chloroplasts to make energy-rich carbon compounds from carbon dioxide and water by oxygenic photosynthesis, a process that generates molecular oxygen (O2) as a by-product.
The light energy captured by chlorophyll a is initially in the form of electrons (and later a proton gradient) that is used to make molecules of ATP and NADPH which temporarily store and transport energy. Their energy is used in the light-independent reactions of the Calvin cycle by the enzyme rubisco to produce molecules of the 3-carbon sugar glyceraldehyde 3-phosphate (G3P). Glyceraldehyde 3-phosphate is the first product of photosynthesis and the raw material from which glucose and almost all other organic molecules of biological origin are synthesised. Some of the glucose is converted to starch which is stored in the chloroplast. Starch is the characteristic energy store of most land plants and algae, while inulin, a polymer of fructose is used for the same purpose in the sunflower family Asteraceae. Some of the glucose is converted to sucrose (common table sugar) for export to the rest of the plant.
Unlike in animals (which lack chloroplasts), plants and their eukaryote relatives have delegated many biochemical roles to their , including synthesising all their fatty acids, and most amino acids. The fatty acids that chloroplasts make are used for many things, such as providing material to build out of and making the polymer cutin which is found in the plant cuticle that protects land plants from drying out.
Plants synthesise a number of unique like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. Vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem and vessels to keep them from collapsing when a plant sucks water through them under water stress. Lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. Sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record. It is widely regarded as a marker for the start of land plant evolution during the Ordovician period. The concentration of carbon dioxide in the atmosphere today is much lower than it was when plants emerged onto land during the Ordovician and Silurian periods. Many monocots like maize and the pineapple and some dicots like the Asteraceae have since independently evolved pathways like Crassulacean acid metabolism and the carbon fixation pathway for photosynthesis which avoid the losses resulting from photorespiration in the more common carbon fixation pathway. These biochemical strategies are unique to land plants.
Plants can synthesise coloured dyes and pigments such as the responsible for the red colour of red wine, yellow Reseda luteola and blue Isatis tinctoria used together to produce Lincoln green, indoxyl, source of the blue dye indigo traditionally used to dye denim and the artist's pigments gamboge and rose madder.
Sugar, starch, cotton, linen, hemp, some types of rope, wood and , papyrus and paper, , epicuticular wax, and natural rubber are examples of commercially important materials made from plant tissues or their secondary products. Charcoal, a pure form of carbon made by pyrolysis of wood, has a long history as a metal-smelting fuel, as a filter material and adsorbent and as an artist's material and is one of the three ingredients of gunpowder. Cellulose, the world's most abundant organic polymer, can be converted into energy, fuels, materials and chemical feedstock. Products made from cellulose include rayon and cellophane, methyl cellulose, biobutanol and nitrocellulose. Sugarcane, rapeseed and soy are some of the plants with a highly fermentable sugar or oil content that are used as sources of , important alternatives to , such as biodiesel. Sweetgrass was used by Native Americans to ward off bugs like mosquitoes. These bug repelling properties of sweetgrass were later found by the American Chemical Society in the molecules phytol and coumarin.
Plants depend on certain edaphic (soil) and climatic factors in their environment but can modify these factors too. For example, they can change their environment's albedo, increase Surface runoff interception, stabilise mineral soils and develop their organic content, and affect local temperature. Plants compete with other organisms in their ecosystem for resources. They interact with their neighbours at a variety of in groups, populations and communities that collectively constitute vegetation. Regions with characteristic vegetation types and dominant plants as well as similar abiotic and biotic factors, climate, and geography make up biomes like tundra or tropical rainforest.
eat plants, but plants can defend themselves and some species are parasitic plant or even carnivorous. Other organisms form mutually beneficial relationships with plants. For example, fungi and rhizobia provide plants with nutrients in exchange for food, are recruited by myrmecophyte to provide protection, , and other animals pollinate flowers and humans and other animals act as to spread and .
Species boundaries in plants may be weaker than in animals, and cross species hybrids are often possible. A familiar example is peppermint, Mentha × piperita, a sterile hybrid between Mentha aquatica and spearmint, Mentha spicata. The many cultivated varieties of wheat are the result of multiple inter- and intra-species crosses between wild species and their hybrids. Angiosperms with monoecious flowers often have self-incompatibility mechanisms that operate between the pollen and stigma so that the pollen either fails to reach the stigma or fails to germinate and produce male . This is one of several methods used by plants to promote outcrossing. In many land plants the male and female gametes are produced by separate individuals. These species are said to be dioecious when referring to vascular plant and monoecious when referring to bryophyte .
Charles Darwin in his 1878 book The Effects of Cross and Self-Fertilization in the Vegetable KingdomDarwin, C. R. 1878. The effects of cross and self fertilisation in the vegetable kingdom. London: John Murray". darwin-online.org.uk at the start of chapter XII noted "The first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross-fertilisation is beneficial and self-fertilisation often injurious, at least with the plants on which I experimented." An important adaptive benefit of outcrossing is that it allows the masking of deleterious mutations in the genome of progeny. This beneficial effect is also known as hybrid vigor or heterosis. Once outcrossing is established, subsequent switching to inbreeding becomes disadvantageous since it allows expression of the previously masked deleterious recessive mutations, commonly referred to as inbreeding depression.
Unlike in higher animals, where parthenogenesis is rare, asexual reproduction may occur in plants by several different mechanisms. The formation of stem in potato is one example. Particularly in arctic or alpine climate habitats, where opportunities for fertilisation of flowers zoophily are rare, plantlets or bulbs, may develop instead of flowers, replacing sexual reproduction with asexual reproduction and giving rise to cloning genetically identical to the parent. This is one of several types of apomixis that occur in plants. Apomixis can also happen in a seed, producing a seed that contains an embryo genetically identical to the parent.
Most sexually reproducing organisms are diploid, with paired chromosomes, but doubling of their chromosome number may occur due to errors in cytokinesis. This can occur early in development to produce an autopolyploid or partly autopolyploid organism, or during normal processes of cellular differentiation to produce some cell types that are polyploid (endopolyploidy), or during gamete formation. An allopolyploid plant may result from a hybridisation event between two different species. Both autopolyploid and allopolyploid plants can often reproduce normally, but may be unable to cross-breed successfully with the parent population because there is a mismatch in chromosome numbers. These plants that are reproductively isolated from the parent species but live within the same geographical area, may be sufficiently successful to form a new species. Some otherwise sterile plant polyploids can still reproduce vegetatively or by seed apomixis, forming clonal populations of identical individuals. Durum wheat is a fertile tetraploid allopolyploid, while common wheat is a fertile hexaploid. The commercial banana is an example of a sterile, seedless triploid hybrid. Common dandelion is a triploid that produces viable seeds by apomictic seed.
As in other eukaryotes, the inheritance of endosymbiotic organelles like mitochondria and in plants is non-Mendelian. Chloroplasts are inherited through the male parent in gymnosperms but often through the female parent in flowering plants.
Model plants such as Arabidopsis thaliana are used for studying the molecular biology of and the chloroplast. Ideally, these organisms have small genomes that are well known or completely sequenced, small stature and short generation times. Corn has been used to study mechanisms of photosynthesis and phloem loading of sugar in plants. The single celled green alga Chlamydomonas reinhardtii, while not an embryophyte itself, contains a chlorophyll b chloroplast related to that of land plants, making it useful for study. A red alga Cyanidioschyzon merolae has also been used to study some basic chloroplast functions. Spinach, peas, soybeans and a moss Physcomitrella patens are commonly used to study plant cell biology.
Agrobacterium tumefaciens, a soil rhizosphere bacterium, can attach to plant cells and infect them with a callus-inducing Ti plasmid by horizontal gene transfer, causing a callus infection called crown gall disease. Schell and Van Montagu (1977) hypothesised that the Ti plasmid could be a natural vector for introducing the Nif gene responsible for nitrogen fixation in the root nodules of Fabaceae and other plant species. Today, genetic modification of the Ti plasmid is one of the main techniques for introduction of to plants and the creation of genetically modified crops.
Epigenetic changes in Eukaryote biology serve to regulate the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotent of the embryo, which in turn become fully differentiated cells. A single fertilised egg cell, the zygote, gives rise to the many different plant cell types including parenchyma, vessel element, phloem sieve tubes, of the epidermis, etc. as it continues to mitosis. The process results from the epigenetic activation of some genes and inhibition of others.
Unlike animals, many plant cells, particularly those of the parenchyma, do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. Exceptions include highly lignified cells, the sclerenchyma and xylem which are dead at maturity, and the phloem sieve tubes which lack nuclei. While plants use many of the same epigenetic mechanisms as animals, such as chromatin remodelling, an alternative hypothesis is that plants set their gene expression patterns using positional information from the environment and surrounding cells to determine their developmental fate.
Epigenetic changes can lead to , which do not follow the Mendelian heritage rules. These epigenetic marks are carried from one generation to the next, with one allele inducing a change on the other.
The algae are a Polyphyly group and are placed in various divisions, some more closely related to plants than others. There are many differences between them in features such as cell wall composition, biochemistry, pigmentation, chloroplast structure and nutrient reserves. The algal division Charophyta, sister to the green algal division Chlorophyta, is considered to contain the ancestor of true plants. The Charophyte class Charophyceae and the land plant sub-kingdom Embryophyta together form the monophyletic group or clade Streptophytina.
Nonvascular land plants are that lack the vascular tissues xylem and phloem. They include , Marchantiophyta and . Pteridophyte vascular plants with true xylem and phloem that reproduced by spores germinating into free-living gametophytes evolved during the Silurian period and diversified into several lineages during the late Silurian and early Devonian. Representatives of the lycopods have survived to the present day. By the end of the Devonian period, several groups, including the Lycopodiophyta, Sphenophyllales and , had independently evolved "megaspory" – their spores were of two distinct sizes, larger and smaller microspores. Their reduced gametophytes developed from megaspores retained within the sporangium (megasporangia) of the sporophyte, a condition known as endospory. Seeds consist of an endosporic megasporangium surrounded by one or two sheathing layers (). The young sporophyte develops within the seed, which on germination splits to release it. The earliest known seed plants date from the latest Devonian Famennian stage. Following the evolution of the seed habit, Spermatophyte diversified, giving rise to a number of now-extinct groups, including seed ferns, as well as the modern gymnosperms and angiosperms. produce "naked seeds" not fully enclosed in an ovary; modern representatives include Pinophyta, , Ginkgo, and Gnetophyta. Angiosperms produce seeds enclosed in a structure such as a Gynoecium or an ovary. Ongoing research on the molecular phylogenetics of living plants appears to show that the angiosperms are a sister clade to the gymnosperms.
Molecules are moved within plants by transport processes that operate at a variety of . Subcellular transport of ions, electrons and molecules such as water and occurs across . Minerals and water are transported from roots to other parts of the plant in the transpiration stream. Diffusion, osmosis, and active transport and mass flow are all different ways transport can occur. Examples of plant nutrition to transport are nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. In vascular plants, these elements are extracted from the soil as soluble ions by the roots and transported throughout the plant in the xylem. Most of the elements required for plant nutrition come from the chemical breakdown of soil minerals. Sucrose produced by photosynthesis is transported from the leaves to other parts of the plant in the phloem and plant hormones are transported by a variety of processes.
The hypothesis that plant growth and development is coordinated by or plant growth regulators first emerged in the late 19th century. Darwin experimented on the movements of plant shoots and roots towards heliotropism and geotropism, and concluded "It is hardly an exaggeration to say that the tip of the radicle . . acts like the brain of one of the lower animals . . directing the several movements". About the same time, the role of (from the Greek , to grow) in control of plant growth was first outlined by the Dutch scientist Frits Went. The first known auxin, indole-3-acetic acid (IAA), which promotes cell growth, was only isolated from plants about 50 years later. This compound mediates the tropic responses of shoots and roots towards light and gravity. The finding in 1939 that plant callus could be maintained in culture containing IAA, followed by the observation in 1947 that it could be induced to form roots and shoots by controlling the concentration of growth hormones were key steps in the development of plant biotechnology and genetic modification.
are a class of plant hormones named for their control of cell division (especially cytokinesis). The natural cytokinin zeatin was discovered in corn, Zea mays, and is a derivative of the purine adenine. Zeatin is produced in roots and transported to shoots in the xylem where it promotes cell division, bud development, and the greening of chloroplasts. The gibberelins, such as gibberelic acid are synthesised from acetyl CoA via the mevalonate pathway. They are involved in the promotion of germination and dormancy-breaking in seeds, in regulation of plant height by controlling stem elongation and the control of flowering. Abscisic acid (ABA) occurs in all land plants except liverworts, and is synthesised from in the chloroplasts and other plastids. It inhibits cell division, promotes seed maturation, and dormancy, and promotes stomatal closure. It was so named because it was originally thought to control abscission. Ethylene is a gaseous hormone that is produced in all higher plant tissues from methionine. It is now known to be the hormone that stimulates or regulates fruit ripening and abscission, and it, or the synthetic growth regulator ethephon which is rapidly metabolised to produce ethylene, are used on industrial scale to promote ripening of cotton, and other climacteric crops.
Another class of is the , first isolated from the oil of Jasminum grandiflorum which regulates wound responses in plants by unblocking the expression of genes required in the systemic acquired resistance response to pathogen attack.
In addition to being the primary energy source for plants, light functions as a signalling device, providing information to the plant, such as how much sunlight the plant receives each day. This can result in adaptive changes in a process known as photomorphogenesis. are the photoreceptors in a plant that are sensitive to light.
The bodies of including Lycopodiopsida, and spermatophyte ( and angiosperms) generally have aerial and subterranean subsystems. The shoots consist of Plant stem bearing green photosynthesising Leaf and reproductive structures. The underground vascularised bear root hairs at their tips and generally lack chlorophyll. Non-vascular plants, the Marchantiophyta, hornworts and mosses do not produce ground-penetrating vascular roots and most of the plant participates in photosynthesis. The sporophyte generation is nonphotosynthetic in liverworts but may be able to contribute part of its energy needs by photosynthesis in mosses and hornworts.
The root system and the shoot system are interdependent – the usually nonphotosynthetic root system depends on the shoot system for food, and the usually photosynthetic shoot system depends on water and minerals from the root system. Cells in each system are capable of creating cells of the other and producing adventitious shoots or roots. Stolons and are examples of shoots that can grow roots. Roots that spread out close to the surface, such as those of willows, can produce shoots and ultimately new plants. In the event that one of the systems is lost, the other can often regrow it. In fact it is possible to grow an entire plant from a single leaf, as is the case with plants in Streptocarpus sect. Saintpaulia, or even a single cell – which can dedifferentiate into a callus (a mass of unspecialised cells) that can grow into a new plant. In vascular plants, the xylem and phloem are the conductive tissues that transport resources between shoots and roots. Roots are often adapted to store food such as sugars or starch, as in and carrots.
Stems mainly provide support to the leaves and reproductive structures, but can store water in succulent plants such as Cactus, food as in potato tubers, or reproduce vegetatively as in the stolons of strawberry plants or in the process of layering. Leaves gather sunlight and carry out photosynthesis. Large, flat, flexible, green leaves are called foliage leaves. , such as , , Ginkgo, and gnetophyta are seed-producing plants with open seeds. Angiosperms are Spermatophyte that produce flowers and have enclosed seeds. Woody plants, such as and , undergo a secondary growth phase resulting in two additional types of tissues: wood (secondary xylem) and bark (secondary phloem and Cork cambium). All gymnosperms and many angiosperms are woody plants. Some plants reproduce sexually, some asexually, and some via both means.
Although reference to major morphological categories such as root, stem, leaf, and trichome are useful, one has to keep in mind that these categories are linked through intermediate forms so that a continuum between the categories results. Furthermore, structures can be seen as processes, that is, process combinations.
Kingdom belongs to Domain Eukaryota and is broken down recursively until each species is separately classified. The order is: Kingdom; Phylum (or Division); Class; Order; Family; Genus (plural genera); Species. The scientific name of a plant represents its genus and its species within the genus, resulting in a single worldwide name for each organism. For example, the tiger lily is Lilium columbianum. Lilium is the genus, and columbianum the specific epithet. The combination is the name of the species. When writing the scientific name of an organism, it is proper to capitalise the first letter in the genus and put all of the specific epithet in lowercase. Additionally, the entire term is ordinarily italicised (or underlined when italics are not available).
The evolutionary relationships and heredity of a group of organisms is called its Phylogenetics. Phylogenetic studies attempt to discover phylogenies. The basic approach is to use similarities based on shared inheritance to determine relationships. As an example, species of Pereskia are trees or bushes with prominent leaves. They do not obviously resemble a typical leafless cactus such as an Echinocactus. However, both Pereskia and Echinocactus have spines produced from areoles (highly specialised pad-like structures) suggesting that the two genera are indeed related.
Judging relationships based on shared characters requires care, since plants may resemble one another through convergent evolution in which characters have arisen independently. Some have leafless, rounded bodies adapted to water conservation similar to those of globular cacti, but characters such as the structure of their flowers make it clear that the two groups are not closely related. The Cladistics takes a systematic approach to characters, distinguishing between those that carry no information about shared evolutionary history – such as those evolved separately in different groups (homoplasies) or those left over from ancestors (plesiomorphies) – and derived characters, which have been passed down from innovations in a shared ancestor (apomorphies). Only derived characters, such as the spine-producing areoles of cacti, provide evidence for descent from a common ancestor. The results of cladistic analyses are expressed as : tree-like diagrams showing the pattern of evolutionary branching and descent.
From the 1990s onwards, the predominant approach to constructing phylogenies for living plants has been molecular phylogenetics, which uses molecular characters, particularly DNA sequences, rather than morphological characters like the presence or absence of spines and areoles. The difference is that the genetic code itself is used to decide evolutionary relationships, instead of being used indirectly via the characters it gives rise to. Clive Stace describes this as having "direct access to the genetic basis of evolution." As a simple example, prior to the use of genetic evidence, fungi were thought either to be plants or to be more closely related to plants than animals. Genetic evidence suggests that the true evolutionary relationship of multicelled organisms is as shown in the cladogram below – fungi are more closely related to animals than to plants.
In 1998, the Angiosperm Phylogeny Group published a phylogenetics for flowering plants based on an analysis of DNA sequences from most families of flowering plants. As a result of this work, many questions, such as which families represent the earliest branches of angiosperms, have now been answered. Investigating how plant species are related to each other allows botanists to better understand the process of evolution in plants. Despite the study of model plants and increasing use of DNA evidence, there is ongoing work and discussion among taxonomists about how best to classify plants into various Taxon. Technological developments such as computers and electron microscopes have greatly increased the level of detail studied and speed at which data can be analysed.
|
|