[ As academic fields increasingly specialize in their nature, technical geography has emerged as a branch of geography specializing in geographic methods and thought.] The emergence of technical geography has brought new relevance to the broad discipline of geography by serving as a set of unique methods for managing the interdisciplinary nature of the phenomena under investigation. While human and physical geographers use the techniques employed by technical geographers, technical geography is more concerned with the fundamental spatial concepts and technologies than the nature of the data. It is therefore closely associated with the spatial tradition of geography while being applied to the other two major branches. A technical geographer might work as a GIS analyst, a GIS developer working to make new software tools, or create general reference maps incorporating human and natural features.
File:Stourhead Pantheon.jpg|Geodesign
File:Meridian convergence and spehrical excess.png|Geodesy
File:Worldwind.png|Geoinformatics
File:Fig 4.4.png|Geographic information science
File:Survey instruments-2.png|Geomatics
File:Euclidean Voronoi diagram.svg|Statistical geography
File:Example_krig.png|Spatial analysis
File:Sample of time geographical description.png|Time geography
Related fields
-
Planetary science: While the discipline of geography is normally concerned with the Earth, the term can also be informally used to describe the study of other worlds, such as the of the Solar System and even beyond. The study of systems larger than the Earth itself usually forms part of Astronomy or Cosmology. The study of other planets is usually called planetary science. Alternative terms such as areography (geography of Mars) have been employed to describe the study of other celestial objects. Ultimately, geography may be considered a subdiscipline within planetary science.
Techniques
All geographic research and analysis start with asking the question "where," followed by "why there." Geographers start with the fundamental assumption set forth in Tobler's first law of geography, that "everything is related to everything else, but near things are more related than distant things."
As spatial interrelationships are key to this synoptic science, maps are a key tool. Classical cartography has been joined by a more modern approach to geographical analysis, computer-based geographic information systems (GIS).
In their study, geographers use four interrelated approaches:
-
Analytical – Asks why we find features and populations in a specific geographic area.
-
Descriptive – Simply specifies the locations of features and populations.
-
Regional – Examines systematic relationships between categories for a specific region or location on the planet.
-
Systematic – Groups geographical knowledge into categories that can be explored globally.
Quantitative methods
Quantitative methods in geography became particularly influential in the discipline during the 1950s and 60s. These methods revitalized the discipline in many ways, allowing scientific testing of hypotheses and proposing scientific geographic theories and laws.
Geomatics
Geomatics is concerned with the application of computers to the traditional spatial techniques used in cartography and topography. Similar to the terms geographic information science and technical geography, geomatics emerged from the quantitative revolution in geography in the mid-1950s. Today, geomatics methods include spatial analysis, geographic information systems (GIS), remote sensing, and global positioning systems (GPS). Geomatics has revitalized some geography departments, especially in Northern America, where the subject had a declining status during the 1950s. Because of this, many have proposed it may be a third branch in geography, in addition to physical and human.
Quantitative cartography
Cartography is the art, science, and technology of making maps. Cartographers study the Earth's surface representation with abstract symbols (map making). Although other subdisciplines of geography rely on maps for presenting their analyses, the actual making of maps is abstract enough to be regarded separately. Cartography has grown from a collection of drafting techniques into an actual science.
Cartographers must learn cognitive psychology and ergonomics to understand which symbols convey information about the Earth most effectively and behaviorism to induce the readers of their maps to act on the information. They must learn geodesy and fairly advanced mathematics to understand how the shape of the Earth affects the distortion of map symbols projected onto a flat surface for viewing. It can be said, without much controversy, that cartography is the seed from which the larger field of geography grew. Most geographers will cite a childhood fascination with maps as an early sign they would end up in the field.
Geographic information systems
Geographic information systems (GIS) deal with storing information about the Earth for automatic retrieval by a computer in an accurate manner appropriate to the information's purpose. In addition to all of the other subdisciplines of geography, GIS specialists must understand computer science and database systems. GIS has revolutionized the field of cartography: nearly all mapmaking is now done with the assistance of some form of GIS software. The science of using GIS software and GIS techniques to represent, analyse, and predict the spatial relationships is called geographic information science (GISc).
Remote sensing
Remote sensing is the art, science, and technology of obtaining information about Earth's features from measurements made at a distance. Remotely sensed data comes in many forms, such as satellite imagery, aerial photography, and data obtained from hand-held sensors. Geographers increasingly use remotely sensed data to obtain information about the Earth's land surface, ocean, and atmosphere, because it: (a) supplies objective information at a variety of spatial scales (local to global), (b) provides a synoptic view of the area of interest, (c) allows access to distant and inaccessible sites, (d) provides spectral information outside the visible portion of the electromagnetic spectrum, and (e) facilitates studies of how features/areas change over time. Remotely sensed data may be analyzed independently or in conjunction with other digital data layers (e.g., in a geographic information system). Remote sensing aids in land use, land cover (LULC) mapping, by helping to determine both what is naturally occurring on a piece of land and what human activities are taking place on it.
Geostatistics
Geostatistics deal with Numerical data analysis, specifically the application of a statistical methodology to the exploration of geographic phenomena.[Krige, Danie G. (1951). "A statistical approach to some basic mine valuation problems on the Witwatersrand". J. of the Chem., Metal. and Mining Soc. of South Africa 52 (6): 119–139] Geostatistics is used extensively in a variety of fields, including hydrology, geology, petroleum exploration, weather analysis, urban planning, logistics, and epidemiology. The mathematical basis for geostatistics derives from cluster analysis, linear discriminant analysis and non-parametric statistical tests, and a variety of other subjects. Applications of geostatistics rely heavily on geographic information systems, particularly for the interpolation (estimate) of unmeasured points. Geographers are making notable contributions to the method of quantitative techniques.
Qualitative methods
Qualitative geography is descriptive rather than numerical or statistical in nature. They add context to concepts, and explore human concepts like beliefs and perspective that are difficult or impossible to quantify. Human geography is much more likely to employ qualitative methods than physical. Increasingly, technical geographers are attempting to employ GIS methods to qualitative datasets.
Qualitative cartography
Qualitative cartography employs many of the same software and techniques as quantitative. It may be employed to inform on map practices, or to visualize perspectives and ideas that are not strictly quantitative in nature.
Ethnography
Ethnographical research techniques are used by human geographers. In cultural geography, there is a tradition of employing qualitative research techniques, also used in anthropology and sociology. Participant observation and in-depth interviews provide human geographers with qualitative data.
History
The concept of geography is present in all cultures, and therefore the history of the discipline is a series of competing narratives, with concepts emerging at various points across space and time. The oldest known date back to ancient Babylon from the 9th century BC. The best known world map, however, is the Imago Mundi of 600 BC. The map as reconstructed by Eckhard Unger shows Babylon on the Euphrates, surrounded by a circular landmass showing Assyria, Urartu, and several cities, in turn surrounded by a "bitter river" (Oceanus), with seven islands arranged around it so as to form a seven-pointed star. The accompanying text mentions seven outer regions beyond the encircling ocean. The descriptions of five of them have survived. In contrast to the Imago Mundi, an earlier Babylonian world map dating back to the 9th century BC depicted Babylon as being further north from the center of the world, though it is not certain what that center was supposed to represent.
The ideas of Anaximander (c. 610–545 BC): considered by later Greek writers to be the true founder of geography, come to us through fragments quoted by his successors. Anaximander is credited with the invention of the gnomon, the simple, yet efficient Greek instrument that allowed the early measurement of latitude. Thales is also credited with the prediction of eclipses. The foundations of geography can be traced to ancient cultures, such as the ancient, medieval, and early modern Chinese. The ancient Greece, who were the first to explore geography as both art and science, achieved this through Cartography, Greek philosophy, and Literature, or through Mathematics. There is some debate about who was the first person to assert that the Spherical Earth in shape, with the credit going either to Parmenides or Pythagoras. Anaxagoras was able to demonstrate that the profile of the Earth was circular by explaining . However, he still believed that the Earth was a flat disk, as did many of his contemporaries. One of the first estimates of the radius of the Earth was made by Eratosthenes.
The first rigorous system of latitude and longitude lines is credited to Hipparchus. He employed a sexagesimal system that was derived from Babylonian mathematics. The meridians were subdivided into 360°, with each degree further subdivided into 60 (minutes). To measure the longitude at different locations on Earth, he suggested using eclipses to determine the relative difference in time. The extensive mapping by the Roman Empire as they explored new lands would later provide a high level of information for Ptolemy to construct detailed . He extended the work of Hipparchus, using a grid system on his maps and adopting a length of 56.5 miles for a degree.
From the 3rd century onwards, Chinese methods of geographical study and writing of geographical literature became much more comprehensive than what was found in Europe at the time (until the 13th century). Chinese geographers such as Liu An, Pei Xiu, Jia Dan, Shen Kuo, Fan Chengda, Zhou Daguan, and Xu Xiake wrote important treatises, yet by the 17th century advanced ideas and methods of Western-style geography were adopted in China.
During the Middle Ages, the fall of the Roman empire led to a shift in the evolution of geography from Europe to the Muslim world. Muslim geographers such as Muhammad al-Idrisi produced detailed world maps (such as Tabula Rogeriana), while other geographers such as Yaqut al-Hamawi, Abu Rayhan Biruni, Ibn Battuta, and Ibn Khaldun provided detailed accounts of their journeys and the geography of the regions they visited. Turkish geographer Mahmud al-Kashgari drew a world map on a linguistic basis, and later so did Piri Reis (Piri Reis map). Further, Islamic scholars translated and interpreting the earlier works of the Ancient Rome and the ancient Greece and established the House of Wisdom in Baghdad for this purpose. Abū Zayd al-Balkhī, originally from Balkh, founded the "Balkhī school" of terrestrial mapping in Baghdad. Suhrāb, a late tenth century Muslim geographer accompanied a book of geographical coordinates, with instructions for making a rectangular world map with equirectangular projection or cylindrical equidistant projection.
Abu Rayhan Biruni (976–1048) first described a polar equi-azimuthal equidistant projection of the celestial sphere. He was regarded as the most skilled when it came to mapping cities and measuring the distances between them, which he did for many cities in the Middle East and the Indian subcontinent. He often combined astronomical readings and mathematical equations to develop methods of pin-pointing locations by recording degrees of latitude and longitude. He also developed similar techniques when it came to measuring the heights of mountains, depths of the , and expanse of the horizon. He also discussed human geography and the planetary habitability of the Earth. He also calculated the latitude of Kath, Khwarezm, using the maximum altitude of the Sun, and solved a complex Geodesy equation to accurately compute the Earth's circumference, which was close to modern values of the Earth's circumference. His estimate of 6,339.9 km for the Earth radius was only 16.8 km less than the modern value of 6,356.7 km. In contrast to his predecessors, who measured the Earth's circumference by sighting the Sun simultaneously from two different locations, al-Biruni developed a new method of using trigonometry calculations based on the angle between a plain and mountain top, which yielded more accurate measurements of the Earth's circumference, and made it possible for it to be measured by a single person from a single location.
The European Age of Discovery during the 16th and the 17th centuries, where many new lands were discovered and accounts by European explorers such as Christopher Columbus, Marco Polo, and James Cook revived a desire for both accurate geographic detail and more solid theoretical foundations in Europe. The problem facing both explorers and geographers was finding the latitude and longitude of a geographic location. The problem of latitude was solved long ago, but that of longitude remained; agreeing on what zero meridians should be was only part of the problem. It was left to John Harrison to solve it by inventing the chronometer H-4 in 1760, and later in 1884 for the International Meridian Conference to adopt by convention the Greenwich meridian as zero meridians.
The 18th and 19th centuries were the times when geography became recognized as a discrete academic discipline, and became part of a typical university curriculum in Europe (especially Paris and Berlin). The development of many geographic societies also occurred during the 19th century, with the foundations of the Société de Géographie in 1821, the Royal Geographical Society in 1830, Russian Geographical Society in 1845, American Geographical Society in 1851, and the National Geographic Society in 1888. The influence of Immanuel Kant, Alexander von Humboldt, Carl Ritter, and Paul Vidal de la Blache can be seen as a major turning point in geography from philosophy to an academic subject.
Over the past two centuries, the advancements in technology with computers have led to the development of geomatics and new practices such as participant observation and geostatistics being incorporated into geography's portfolio of tools. In the West during the 20th century, the discipline of geography went through four major phases: environmental determinism, regional geography, the quantitative revolution, and critical geography. The strong interdisciplinary links between geography and the sciences of geology and botany, as well as economics, sociology, and demographics, have also grown greatly, especially as a result of earth system science that seeks to understand the world in a holistic view. New concepts and philosophies have emerged from the rapid advancement of computers, quantitative methods, and interdisciplinary approaches. In 1970, Waldo Tobler proposed the first law of geography, "everything is related to everything else, but near things are more related than distant things." This law summarizes the first assumption geographers make about the world.
Notable geographers
-
Alexander von Humboldt (1769–1859) – published Cosmos and founder of the sub-field biogeography.
-
Anne Kelly Knowles (Born 1957) – influential in the use of GIS and geographic methods in History.
-
Arnold Henry Guyot (1807–1884) – noted the structure of glaciers and advanced understanding in Glacial motion, especially in fast ice flow.
-
Carl O. Sauer (1889–1975) – cultural geographer.
-
Carl Ritter (1779–1859) – occupied the first chair of geography at Berlin University.
-
Cynthia Brewer – cartographic theorist that created the Apache 2.0 licensed web application ColorBrewer.
-
Dana Tomlin (1779–1859) – originator of map algebra
-
David Harvey (born 1935) – Marxist geographer and author of theories on spatial and urban geography, winner of the Vautrin Lud Prize.
-
Doreen Massey (1944–2016) – scholar in the space and places of globalization and its pluralities; winner of the Vautrin Lud Prize.
-
Edward Soja (1940–2015) – worked on regional development, planning, and governance and coined the terms Synekism and Postmetropolis; winner of the Vautrin Lud Prize.
-
Ellen Churchill Semple (1863–1932) – first female president of the Association of American Geographers.
-
Eratosthenes ( 276–c. 195/194 BC) – calculated the size of the Earth.
-
Ernest Burgess (1886–1966) – creator of the concentric zone model.
-
Gerardus Mercator (1512–1594) – cartography who produced the mercator projection
-
John Francon Williams (1854–1911) – author of The Geography of the Oceans.
-
Karl Butzer (1934–2016) – German-American geographer, cultural ecologist, and environmental archaeologist.
-
Mark Monmonier (born 1943) – cartographic theorist that wrote numerous books contributing to Geographic Information Systems.
-
Mei-Po Kwan (born 1962) - contributed significantly to the use of GPS and real-time mapping within GIS
-
Michael Frank Goodchild (born 1944) – GIS scholar and winner of the RGS founder's medal in 2003.
-
Muhammad al-Idrisi (Arabic: أبو عبد الله محمد الإدريسي; Latin: Dreses) (1100–1165) – author of Nuzhatul Mushtaq.
-
Nigel Thrift (born 1949) – originator of non-representational theory.
-
Paul Vidal de La Blache (1845–1918) – founder of the French school of geopolitics, wrote the principles of human geography.
-
Ptolemy (c. 100–c. 170) – compiled Greek and Roman knowledge into the book Geographia.
-
Radhanath Sikdar (1813–1870) – calculated the height of Mount Everest.
-
Roger Tomlinson (1933 – 2014) – the primary originator of modern geographic information systems.
-
Sir Halford Mackinder (1861–1947) – co-founder of the LSE, Geographical Association.
-
Strabo (64/63 BC – c. AD 24) – wrote Geographica, one of the first books outlining the study of geography.
-
Waldo Tobler (1930-2018) – coined the first law of geography and second law of geography.
-
Walter Christaller (1893–1969) – human geographer and inventor of Central place theory.
-
William Morris Davis (1850–1934) – father of American geography and developer of the cycle of erosion.
-
Yi-Fu Tuan (1930-2022) – Chinese-American scholar credited with starting Humanistic Geography as a discipline.
Institutions and societies
Main category: Geography Organizations
-
American Association of Geographers (AAG)
-
American Geographical Society (US)
-
Anton Melik Geographical Institute (Slovenia)
-
Gamma Theta Upsilon (international)
-
Institute of Geographical Information Systems (Pakistan)
-
International Geographical Union (International)
-
Karachi Geographical Society (Pakistan)
-
National Geographic Society (US)
-
Royal Canadian Geographical Society (Canada)
-
Royal Danish Geographical Society (Denmark)
-
Royal Geographical Society (UK)
-
Russian Geographical Society (Russia)
Publications
Main category: Geography Journals
-
Annals of the American Association of Geographers
-
Antipode
-
Applied Geography
-
Concepts and Techniques in Modern Geography
-
Dialogues in Human Geography
-
Economic Geography
-
Geographia Technica
-
Geographical Review
-
Geographical Bulletin
-
GeoHumanities
-
International Journal of Geographical Information Science
-
Journal of Maps
-
Journal of Rural Studies
-
Journal of Transport Geography
-
National Geographic
-
Professional Geographer
-
Progress in Human Geography
-
The Geographical Journal
-
The Professional Geographer
See also
External links