Product Code Database
Example Keywords: leather -scarf $70-156
barcode-scavenger
   » Wiki: Cartography
Tag Wiki 'Cartography'.
Tag

Cartography (; from χάρτης chartēs, "papyrus, sheet of paper, map"; and γράφειν graphein, "write") is the study and practice of making . Combining , , and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.

The fundamental problems of traditional cartography are to:

  • Set the map's agenda and select traits of the object to be mapped. This is the concern of map editing. Traits may be physical, such as roads or land masses, or may be abstract, such as or political boundaries.
  • Represent the terrain of the mapped object on flat media. This is the concern of .
  • Eliminate characteristics of the mapped object that are not relevant to the map's purpose. This is the concern of generalization.
  • Reduce the complexity of the characteristics that will be mapped. This is also the concern of generalization.
  • Orchestrate the elements of the map to best convey its message to its audience. This is the concern of map design.

Modern cartography constitutes many theoretical and practical foundations of geographic information systems.


History


Ancient times
What is the earliest known map is a matter of some debate, both because the term "map" is not well-defined and because some artifacts that might be maps might actually be something else. A wall painting that might depict the ancient Anatolian city of Çatalhöyük (previously known as Catal Huyuk or Çatal Hüyük) has been dated to the late 7th millennium BCE. Among the prehistoric alpine rock carvings of (France) and (Italy), dated to the 4th millennium BCE, geometric patterns consisting of dotted rectangles and lines are widely interpretedBicknell, Clarence (1913). A Guide to the prehistoric Engravings in the Italian Maritime Alps, Bordighera.Delano Smith, Catherine (1987). Cartography in the Prehistoric Period in the Old World: Europe, the Middle East, and North Africa. In: Harley J.B., Woodward D. (eds.), The History of Cartography: Cartography in Prehistoric, Ancient and Mediaeval Europe and the Mediterranean v. 1, Chicago: 54-101 online, retrieved December 2, 2014. in archaeological literature as a depiction of cultivated plots.Arcà, Andrea (2004). The topographic engravings of the Alpine rock-art: fields, settlements and agricultural landscapes. In Chippindale C., Nash G. (eds.) The figured landscapes of Rock-Art, Cambridge University Press, pp. 318-349; online academia.edu, retrieved December 2, 2014. Other known maps of the ancient world include the Minoan "House of the Admiral" wall painting from c. 1600 BCE, showing a seaside community in an oblique perspective, and an engraved map of the holy city of , from the period (14th12th centuries BCE). Uchicago.edu The Nippur Expedition The oldest surviving world maps are from 9th century BCE Babylonia.
(2018). 9781405191463, John Wiley & Sons.
One shows on the , surrounded by , and several cities, all, in turn, surrounded by a "bitter river" (). Another depicts Babylon as being north of the center of the world.

The and created maps from the time of in the 6th century BCE. In the 2nd century CE, wrote his on cartography, .J. L. Berggren, Alexander Jones; Ptolemy's Geography By Ptolemy, Princeton University Press, 2001 This contained Ptolemy's world map – the world then known to Western society (). As early as the 8th century, Arab scholars were translating the works of the Greek geographers into Arabic.

In , geographical literature dates to the 5th century BCE. The oldest extant Chinese maps come from the State of Qin, dated back to the 4th century BCE, during the Warring States period. In the book of the Xin Yi Xiang Fa Yao, published in 1092 by the scientist , a on the equidistant cylindrical projection.

(1997). 9780792355564, Kluwer Academic Publishers.
(1971). 9780521070607, Cambridge University Press.
Although this method of charting seems to have existed in China even before this publication and scientist, the greatest significance of the star maps by Su Song is that they represent the oldest existent star maps in form.

Early forms of cartography of India included depictions of the and surrounding constellations. These charts may have been used for navigation.

(1990). 9788120806900, Motilal Banarsidass Publishers.


Middle Ages to Renaissance
("maps of the world") are the medieval European maps of the world. About 1,100 of these are known to have survived: of these, some 900 are found illustrating manuscripts and the remainder exist as stand-alone documents.Woodward, p. 286

The Arab geographer Muhammad al-Idrisi produced his medieval atlas (Book of Roger) in 1154. By combining the knowledge of , the , , and the (which he learned through contemporary accounts from Arab merchants and explorers) with the information he inherited from the classical geographers, he was able to write detailed descriptions of a multitude of countries. Along with the substantial text he had written, he created a world map influenced mostly by the Ptolemaic conception of the world, but with significant influence from multiple Arab geographers. It remained the most accurate world map for the next three centuries.S. P. Scott (1904), History of the Moorish Empire, pp. 461–462."Muhammad ibn Muhammad al-Idrisi." Encyclopedia of World Biography. . Encyclopedia.com. 27 Jul. 2018 . The map was divided into seven zones, with detailed descriptions of each zone. As part of this work, a smaller, circular map was made depicting the south on top and Arabia in the center. Al-Idrisi also made an estimate of the circumference of the world, accurate to within 10%.

In the Age of Exploration, from the 15th century to the 17th century, European cartographers both copied earlier maps (some of which had been passed down for centuries) and drew their own, based on explorers' observations and new techniques. The invention of the , and enabled increasing accuracy. In 1492, , a German cartographer, made the oldest extant globe of the Earth. Globes and Terrain Models – Geography and Maps: An Illustrated Guide, Library of Congress

In 1507, Martin Waldseemüller produced a globular world map and a large 12-panel world wall map ( Universalis Cosmographia) bearing the first use of the name "America". cartographer was the author of the first known planisphere with a graduated Equator (1527). cartographer produced at least 71 manuscript atlases of sea charts. refined and promoted the Werner projection. This was an equal-area, heart-shaped world map projection (generally called a cordiform projection) which was used in the 16th and 17th centuries. Over time, other iterations of this map type arose; most notable are the sinusoidal projection and the . The Werner projection places its standard parallel at the North Pole; a sinusoidal projection places its standard parallel at the equator; and the Bonne projection is intermediate between the two.Henry Bottomley, « Between the Sinusoidal projection and the Werner: an alternative to the Bonne », Cybergeo : European Journal of Geography Online, Cartography, Images, GIS, document 241, Online since 13 June 2003, connection on 27 July 2018. URL : http://journals.openedition.org/cybergeo/3977 ; DOI : 10.4000/cybergeo.3977

In 1569, mapmaker Gerardus Mercator first published a map based on his Mercator projection, which uses equally-spaced parallel vertical lines of longitude and parallel latitude lines spaced farther apart as they get farther away from the equator. By this construction, courses of constant bearing are conveniently represented as straight lines for navigation. The same property limits its value as a general-purpose world map because regions are shown as increasingly larger than they actually are the further from the equator they are. Mercator is also credited as the first to use the word "atlas" to describe a collection of maps. In the later years of his life, Mercator resolved to create his Atlas, a book filled with many maps of different regions of the world, as well as a chronological history of the world from the Earth's creation by God until 1568. He was unable to complete it to his satisfaction before he died. Still, some additions were made to the Atlas after his death and new editions were published after his death.


Modern times
Due to the sheer physical difficulties inherent in cartography, map-makers frequently lifted material from earlier works without giving credit to the original cartographer. For example, one of the most famous early maps of North America is unofficially known as the "Beaver Map", published in 1715 by . This map is an exact reproduction of a 1698 work by Nicolas de Fer. De Fer in turn had copied images that were first printed in books by , published in 1697, and François Du Creux, in 1664. By the 18th century, map-makers started to give credit to the original engraver by printing the phrase "After the" on the work."Map Imitation" in Detecting the Truth: Fakes, Forgeries and Trickery, a virtual museum exhibition at Library and Archives Canada


Technological changes

In cartography, technology has continually changed in order to meet the demands of new generations of mapmakers and map users. The first maps were produced manually, with brushes and parchment; so they varied in quality and were limited in distribution. The advent of magnetic devices, such as the and much later, devices, allowed for the creation of far more accurate maps and the ability to .

Advances in mechanical devices such as the , quadrant and , allowed the mass production of maps and the creation of accurate reproductions from more accurate data. was one of the first cartographers to use the printing press to make maps more widely available. Optical technology, such as the , and other devices that use telescopes, allowed accurate land surveys and allowed mapmakers and navigators to find their by measuring angles to the at night or the Sun at noon.

Advances in photochemical technology, such as the and , make possible maps with fine details, which do not distort in shape and which resist moisture and wear. This also eliminated the need for engraving, which further speeded up map production.

In the 20th century, aerial photography, satellite imagery, and provided efficient, precise methods for mapping physical features, such as coastlines, roads, buildings, watersheds, and topography. The United States Geological Survey has devised multiple new map projections, notably the Space Oblique Mercator for interpreting satellite for mapping the surface. The use of satellites and space telescopes now allows researchers to map other planets and moons in outer space. Advances in electronic technology ushered in another revolution in cartography: ready availability of computers and peripherals such as monitors, plotters, printers, scanners (remote and document) and analytic stereo plotters, along with computer programs for visualization, image processing, spatial analysis, and database management, democratized and greatly expanded the making of maps. The ability to superimpose spatially located variables onto existing maps created new uses for maps and new industries to explore and exploit these potentials. See also digital raster graphic.

These days most commercial-quality maps are made using of three main types: CAD, GIS and specialized illustration . Spatial information can be stored in a , from which it can be extracted on demand. These tools lead to increasingly dynamic, interactive maps that can be manipulated digitally.

, , and laser rangefinders make it possible to create maps directly from measurements made on site.


Deconstruction
There are technical and cultural aspects to producing maps. In this sense, maps can sometimes be said to be biased. The study of bias, influence, and agenda in making a map is what comprise a map's . A central tenet of deconstructionism is that maps have power. Other assertions are that maps are inherently biased and that we search for metaphor and rhetoric in maps.

It is claimed that the Europeans promoted an "" understanding of the map as early as the 17th century. Harley, J. B. (1989). "Deconstructing the Map". Cartographica, Vol. 26, No. 2. pp 1-5 An example of this understanding is that " 17th century map-makers were careful and precise in their strategic approaches to maps based on a scientific model of knowledge. Popular belief at the time was that this scientific approach to cartography was immune to the social atmosphere.

A common belief is that science heads in a direction of progress, and thus leads to more accurate representations of maps. In this belief European maps must be superior to others, which necessarily employed different map-making skills. "There was a 'not cartography' land where lurked an army of inaccurate, heretical, subjective, valuative, and ideologically distorted images. Cartographers developed a 'sense of the other' in relation to nonconforming maps."

Although cartography has been a target of much criticism in recent decades, a cartographer's 'black box' always seemed to be naturally defended to the point where it overcame the criticism. However, to later scholars in the field, it was evident that cultural influences dominate map-making. For instance, certain abstracts on maps and the map-making society itself describe the social influences on the production of maps. This social play on cartographic knowledge "…produces the 'order' of Michel Foucault, The Order of Things: An Archaeology of the Human Sciences. A Translation of Les mots et les choses. New York: Vintage Books, 1973.

Depictions of Africa are a common target of deconstructionism.Stone, Jeffrey C. (1988). "Imperialism, Colonialism and Cartography". Transactions of the Institute of British Geographers, N.S. 13. Pp 57. According to deconstructionist models, cartography was used for strategic purposes associated with imperialism and as instruments and representations of powerBassett, J. T. (1994). "Cartography and Empire Building in the Nineteenth-Century West Africa". Geographical Review, Vol. 84, No. 3. Pp 316. during the conquest of Africa. The depiction of Africa and the low latitudes in general on the Mercator projection has been interpreted as imperialistic and as symbolic of subjugation due to the diminished proportions of those regions compared to higher latitudes where the European powers were concentrated.Monmonier, Mark (2004). Rhumb Lines and Map Wars: A Social History of the Mercator Projection p. 152. Chicago: The University of Chicago Press. (Thorough treatment of the social history of the Mercator projection and Gall–Peters projections.)

Maps furthered imperialism and colonization of Africa in practical ways by showing basic information like roads, terrain, natural resources, settlements, and communities. Through this, maps made European commerce in Africa possible by showing potential commercial routes, and made natural resource extraction possible by depicting locations of resources. Such maps also enabled military conquests and made them more efficient, and imperial nations further used them to put their conquests on display. These same maps were then used to cement territorial claims, such as at the Berlin Conference of 1884–1885.

Before 1749, maps of the African continent had African kingdoms drawn with assumed or contrived boundaries, with unknown or unexplored areas having drawings of animals, imaginary physical geographic features, and descriptive texts. In 1748, Jean B. B. d'Anville created the first map of the African continent that had blank spaces to represent the unknown territory. This was revolutionary in cartography and the representation of power associated with map making.


Map types

General vs. thematic cartography

In understanding basic maps, the field of cartography can be divided into two general categories: general cartography and thematic cartography. General cartography involves those maps that are constructed for a general audience and thus contain a variety of features. General maps exhibit many reference and location systems and often are produced in a series. For example, the 1:24,000 scale topographic maps of the United States Geological Survey (USGS) are a standard as compared to the 1:50,000 scale Canadian maps. The government of the UK produces the classic 1:50,000 (replacing the older 1 inch to 1 mile) "" maps of the entire UK and with a range of correlated larger- and smaller-scale maps of great detail. Many private mapping companies have also produced thematic map series.

involves maps of specific geographic themes, oriented toward specific audiences. A couple of examples might be a dot map showing corn production in Indiana or a shaded area map of Ohio counties, divided into numerical classes. As the volume of geographic data has exploded over the last century, thematic cartography has become increasingly useful and necessary to interpret spatial, cultural and social data.

A third type of map is known as an "orienteering," or special purpose map. This type of map falls somewhere between thematic and general maps. They combine general map elements with thematic attributes in order to design a map with a specific audience in mind. Oftentimes, the type of audience an orienteering map is made for is in a particular industry or occupation. An example of this kind of map would be a municipal utility map.


Topographic vs. topological
A is primarily concerned with the description of a place, including (especially in the 20th and 21st centuries) the use of showing elevation. or relief can be shown in a variety of ways (see Cartographic relief depiction). In the present era, one of the most widespread and advanced methods used to form topographic maps is to use computer software to generate digital elevation models which show shaded relief. Before such software existed, cartographers had to draw shaded relief by hand. One cartographer who is respected as a master of hand-drawn shaded relief is the Swiss professor Eduard Imhof whose efforts in hill shading were so influential that his method became used around the world despite it being so labor-intensive.

A is a very general type of map, the kind one might sketch on a napkin. It often disregards scale and detail in the interest of clarity of communicating specific route or relational information. is an iconic example. Although the most widely used map of "The Tube," it preserves little of reality: it varies scale constantly and abruptly, it straightens curved tracks, and it contorts directions. The only topography on it is the , letting the reader know whether a station is north or south of the river. That and the topology of station order and interchanges between train lines are all that is left of the geographic space. Yet those are all a typical passenger wishes to know, so the map fulfils its purpose.

(2018). 9780465017300, Basic Books.


Map design


Map purpose and selection of information
Arthur H. Robinson, an American cartographer influential in thematic cartography, stated that a map not properly designed "will be a cartographic failure." He also claimed, when considering all aspects of cartography, that "map design is perhaps the most complex."
(2018). 9780471728054, John Wiley & Sons.
Robinson codified the mapmaker's understanding that a map must be designed foremost with consideration to the audience and its needs.

From the very beginning of mapmaking, maps "have been made for some particular purpose or set of purposes".

(1982). 9780226722856, The University of Chicago Press.
The intent of the map should be illustrated in a manner in which the percipient acknowledges its purpose in a timely fashion. The term percipient refers to the person receiving information and was coined by Robinson.
(1995). 157230040X, The Guilford Press. 157230040X
The principle of figure-ground refers to this notion of engaging the user by presenting a clear presentation, leaving no confusion concerning the purpose of the map. This will enhance the user's experience and keep their attention. If the user is unable to identify what is being demonstrated in a reasonable fashion, the map may be regarded as useless.

Making a meaningful map is the ultimate goal. explains that a well designed map "is convincing because it implies authenticity" (1994, pp. 9). An interesting map will no doubt engage a reader. Information richness or a map that is multivariate shows relationships within the map. Showing several variables allows comparison, which adds to the meaningfulness of the map. This also generates hypothesis and stimulates ideas and perhaps further research. In order to convey the message of the map, the creator must design it in a manner which will aid the reader in the overall understanding of its purpose. The title of a map may provide the "needed link" necessary for communicating that message, but the overall design of the map fosters the manner in which the reader interprets it (Monmonier, 1993, pp. 93).

In the 21st century it is possible to find a map of virtually anything from the inner workings of the to the of . Therefore, there are now a huge variety of different styles and types of map – for example, one area which has evolved a specific and recognisable variation are those used by organisations to guide , namely urban rail and metro maps, many of which are loosely based on 45 degree angles as originally perfected by and .


Naming conventions
Most maps use text to label places and for such things as the map title, legend and other information. Although maps are often made in one specific language, place names often differ between languages. So a map made in English may use the name Germany for that country, while a German map would use Deutschland and a French map Allemagne. A non-native term for a place is referred to as an .

In some cases the correct name is not clear. For example, the nation of Burma officially changed its name to , but many nations do not recognize the ruling junta and continue to use Burma. Sometimes an official name change is resisted in other languages and the older name may remain in common use. Examples include the use of Saigon for Ho Chi Minh City, Bangkok for and Ivory Coast for .

Difficulties arise when or transcription between is required. Some well-known places have well-established names in other languages and writing systems, such as Russia or Rußland for Росси́я, but in other cases a system of transliteration or transcription is required. Even in the former case, the exclusive use of an exonym may be unhelpful for the map user. It will not be much use for an English user of a map of Italy to show Livorno only as "Leghorn" when road signs and railway timetables show it as "Livorno". In transliteration, the characters in one script are represented by characters in another. For example, the letter Р is usually written as R in the , although in many cases it is not as simple as a one-for-one equivalence. Systems exist for transliteration of , but the results may vary. For example, the Yemeni city of Mocha is written variously in English as Mocha, Al Mukha, al-Mukhā, Mocca and Moka. Transliteration systems are based on relating written symbols to one another, while transcription is the attempt to spell in one language the phonetic sounds of another. Chinese writing is now usually converted to the Latin alphabet through the phonetic transcription systems. Other systems were used in the past, such as , resulting in the city being spelled Beijing on newer English maps and Peking on older ones.

Further difficulties arise when countries, especially former colonies, do not have a strong national geographic naming standard. In such cases, cartographers may have to choose between various phonetic spellings of local names versus older imposed, sometimes resented, colonial names. Some countries have multiple official languages, resulting in multiple official placenames. For example, the capital of Belgium is both Brussel and Bruxelles. In Canada, English and French are official languages and places have names in both languages. is also officially named la Colombie-Britannique. English maps rarely show the French names outside of Quebec, which itself is spelled Québec in French.

(1992). 9780528834929, .

The study of placenames is called , while that of the origin and historical usage of placenames as words is .

In order to improve legibility or to aid the illiterate, some maps have been produced using pictograms to represent places. The iconic example of this practice is 's early plans for the Mexico City Metro, on which stations were shown simply as stylized logos. Wyman also prototyped such a map for the , though ultimately the idea was rejected. Other cities experimenting with such maps are , and .


Map symbology
Cartographic encodes information on the map in ways intended to convey information to the map reader efficiently, taking into consideration the limited space on the map, models of human understanding through visual means, and the likely cultural background and education of the map reader. Symbology may be implicit, using universal elements of design, or may be more specific to cartography or even to the map.

A map may have any of many kinds of symbolization. Some examples are:

  • A legend, or key, explains the map's pictorial language.
  • A title indicates the region and perhaps the theme that the map portrays.
  • A neatline frames the entire map image.
  • A or north arrow provides orientation.
  • An overview map gives global context for the primary map.
  • A translates between map measurements and real distances.
  • A map projection provides a way to represent the curved surface on the plane of the map.

The map may declare its sources, accuracy, publication date and authorship, and so forth. The map image itself portrays the region.

is another form of symbology, one whose importance can reach beyond aesthetic. In complex thematic maps, for example, the color scheme's structure can critically affect the reader's ability to understand the map's information. Modern computer displays and print technologies can reproduce much of the that humans can perceive, allowing for intricate exploitation of human visual discrimination in order to convey detailed information.

Quantitative symbols give a visual indication of the magnitude of the phenomenon that the symbol represents. Two major classes of symbols are used to portray quantity. Proportional symbols change size according to phenomenon's magnitude, making them appropriate for representing statistics. portray data collection areas, such as counties or census tracts, with color. Using color this way, the darkness and intensity (or value) of the color is evaluated by the eye as a measure of intensity or concentration.


Map key or legend

The map key, or legend, describes how to interpret the map's symbols and may give details of publication and authorship.


Examples of point symbols
(Hammer and pick symbol), former mine
,
church, , (♁)
Tourist information


Map generalization
A good map has to compromise between portraying the items of interest (or ) in the right place on the map, and the need to show that item using text or a symbol, which take up space on the map and might displace some other item of information. The cartographer is thus constantly making judgements about what to include, what to leave out and what to show in a slightly incorrect place. This issue assumes more importance as the scale of the map gets smaller (i.e. the map shows a larger area) because the information shown on the map takes up more space on the ground. A good example from the late 1980s was the 's first digital maps, where the absolute positions of major roads were sometimes a scale distance of hundreds of metres away from , when shown on digital maps at scales of 1:250,000 and 1:625,000, because of the overriding need to annotate the features.


Map projections
The Earth being spherical, any flat representation generates distortions such that shapes and areas cannot both be conserved simultaneously, and distances can never all be preserved. The mapmaker must choose a suitable map projection according to the space to be mapped and the purpose of the map.


Cartographic errors
Some maps contain deliberate errors or distortions, either as propaganda or as a "" to help the copyright owner identify infringement if the error appears in competitors' maps. The latter often come in the form of nonexistent, misnamed, or misspelled "".
(1996). 9780226534213, University of Chicago Press.
Other names and forms for this are , , and copyright easter eggs. Openstreetmap.org Copyright Easter Eggs

Another motive for deliberate errors is cartographic "vandalism": a mapmaker wishing to leave his or her mark on the work. Mount Richard, for example, was a fictitious peak on the ' continental divide that appeared on a Boulder County, Colorado map in the early 1970s. It is believed to be the work of draftsman Richard Ciacci. The fiction was not discovered until two years later.

Sandy Island (New Caledonia) is an example of a fictitious location that stubbornly survives, reappearing on new maps copied from older maps while being deleted from other new editions.


See also


Bibliography


Further reading
Mapmaking

History
  • (2005). 9780792265252, National Geographic. .
  • (1987). 9780226316338, University of Chicago Press.
  • (1992). 9780226316352, University of Chicago Press.
  • (1994). 9780226316376, University of Chicago Press.
  • (1998). 9780226907284, University of Chicago Press.
  • (2018). 9780226907338, University of Chicago Press.
  • (2018). 9780226534695, University of Chicago Press.
  • 9780226316338, University of Chicago Press.

Meanings


External links

Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
7s Time