Arsenic is a chemical element; it has symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is notoriously toxic. It occurs naturally in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. It has various allotropes, but only the grey form, which has a metallic appearance, is important to industry.
The primary use of arsenic is in alloys of lead (for example, in car batteries and ammunition). Arsenic is also a common n-type dopant in semiconductor electronic devices, and a component of the III–V compound semiconductor gallium arsenide. Arsenic and its compounds, especially the trioxide, are used in the production of , treated wood products, , and . These applications are declining with the increasing recognition of the persistent toxicity of arsenic and its compounds.
Arsenic has been known since ancient times to be poisonous to humans. However, a few species of bacteria are able to use arsenic compounds as respiratory . Trace quantities of arsenic have been proposed to be an essential dietary element in rats, hamsters, goats, and chickens. Research has not been conducted to determine whether small amounts of arsenic may play a role in human metabolism. However, arsenic poisoning occurs in multicellular life if quantities are larger than needed. Arsenic contamination of groundwater is a problem that affects millions of people across the world.
The United States' Environmental Protection Agency states that all forms of arsenic are a serious risk to human health. The United States Agency for Toxic Substances and Disease Registry ranked arsenic number 1 in its 2001 prioritized list of hazardous substances at Superfund sites. Arsenic is classified as a group-A carcinogen.
Arsenic sublimes upon heating at atmospheric pressure, converting directly to a gaseous form without an intervening liquid state at . However, at 817 °C and 28 atm, arsenic melts. The triple point is at 3.63 MPa and .
Isotopes that are lighter than the stable 75As tend to decay by beta decay, and those that are heavier tend to decay by beta decay, with some exceptions.
At least 10 have been described, ranging in atomic mass from 66 to 84. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds.
Arsenic forms colorless, odorless, crystalline Arsenic trioxide ("white arsenic") and As2O5 which are hygroscopic and readily soluble in water to form acidic solutions. Arsenic acid is a weak acid and its salts, known as , are a major source of arsenic contamination of groundwater in regions with high levels of naturally occurring arsenic minerals. Synthetic arsenates include Scheele's Green (cupric hydrogen arsenate, acidic copper arsenate), calcium arsenate, and lead hydrogen arsenate. These three have been used as agricultural and .
The protonation steps between the arsenate and arsenic acid are similar to those between phosphate and phosphoric acid. Unlike phosphorous acid, arsenous acid is genuinely tribasic, with the formula As(OH)3.Greenwood and Earnshaw, pp. 572–578
A broad variety of sulfur compounds of arsenic are known. Orpiment (As2S3) and realgar (As4S4) are somewhat abundant and were formerly used as painting pigments. In As4S10, arsenic has a formal oxidation state of +2 in As4S4 which features As-As bonds so that the total covalency of As is still 3. Both orpiment and realgar, as well as As4S3, have selenium analogs; the analogous As2Te3 is known as the mineral kalgoorlieite,
and the anion As2Te− is known as a ligand in cobalt complexes.Greenwood and Earnshaw, pp. 578–583
All trihalides of arsenic(III) are well known except the astatide, which is unknown. Arsenic pentafluoride (AsF5) is the only important pentahalide, reflecting the lower stability of the +5 oxidation state; even so, it is a very strong fluorinating and oxidizing agent. (The pentachloride is a kind of yellow soild that only stable below −50 °C, at which temperature it decomposes to the trichloride, releasing chlorine gas.)
Minerals with the formula MAsS and MAs2 (M = Iron, Nickel, Cobalt) are the dominant commercial sources of arsenic, together with realgar (an arsenic sulfide mineral) and native (elemental) arsenic. An illustrative mineral is arsenopyrite (ironsulfur), which is structurally related to iron pyrite. Many minor As-containing minerals are known. Arsenic also occurs in various organic forms in the environment.
In 2014, China was the top producer of white arsenic with almost 70% world share, followed by Morocco, Russia, and Belgium, according to the British Geological Survey and the United States Geological Survey. Most arsenic refinement operations in the US and Europe have closed over environmental concerns. Arsenic is found in the smelter dust from copper, gold, and lead smelters, and is recovered primarily from copper refinement dust. Arsenic is the main impurity found in copper concentrates to enter copper smelting facilities. There has been an increase in arsenic in copper concentrates over the years since copper mining has moved into deep high-impurity as shallow, low-arsenic copper deposits have been progressively depleted.
On roasting arsenopyrite in air, arsenic sublimes as arsenic(III) oxide leaving iron oxides, while roasting without air results in the production of gray arsenic. Further purification from sulfur and other chalcogens is achieved by sublimation in vacuum, in a hydrogen atmosphere, or by distillation from molten lead-arsenic mixture.
Latin-speakers adopted the Greek term as arsenicum, which in French ultimately became arsenic, whence the English word "arsenic".
Arsenic sulfides (orpiment, realgar) and oxides have been known and used since ancient times. Zosimos () describes roasting sandarach (realgar) to obtain cloud of arsenic (arsenic trioxide), which he then redox to gray arsenic. As the symptoms of arsenic poisoning are not very specific, the substance was frequently used for murder until the advent in the 1830s of the Marsh test, a sensitive chemical test for its presence. (Another less sensitive but more general test is the Reinsch test.) Owing to its use by the ruling class to murder one another and its potency and discreetness, arsenic has been called the "poison of kings" and the "king of poisons". Arsenic became known as "the inheritance powder" due to its use in killing family members in the Renaissance era.
During the Bronze Age, arsenic was melted with copper to make arsenical bronze.
Jabir ibn Hayyan described the isolation of arsenic before 815 AD.
Albertus Magnus (Albert the Great, 1193–1280) later isolated the element from a compound in 1250, by heating soap together with arsenic trisulfide. In 1649, Johann Schröder published two ways of preparing arsenic. Crystals of elemental (native) arsenic are found in nature, although rarely.
Cadet's fuming liquid (impure cacodyl), often claimed as the first synthetic organometallic compound, was synthesized in 1760 by Louis Claude Cadet de Gassicourt through the reaction of potassium acetate with arsenic trioxide.
In the Victorian era, women would eat "arsenic" ("white arsenic" or arsenic trioxide) mixed with vinegar and chalk to improve the complexion of their faces, making their skin paler (to show they did not work in the fields). The accidental use of arsenic in the adulteration of foodstuffs led to the Bradford sweet poisoning in 1858, which resulted in 21 deaths. From the late 18th century wallpaper production began to use dyes made from arsenic,
which was thought to increase the pigment's brightness. One account of the illness and 1821 death of Napoleon implicates arsenic poisoning involving wallpaper.
Two arsenic pigments have been widely used since their discovery – Paris Green in 1814 and Scheele's Green in 1775. After the toxicity of arsenic became widely known, these chemicals were used less often as pigments and more often as insecticides. In the 1860s, an arsenic byproduct of dye production, London Purple, was widely used. This was a solid mixture of arsenic trioxide, aniline, lime, and ferrous oxide, insoluble in water and very toxic by inhalation or ingestion But it was later replaced with Paris Green, another arsenic-based dye. With better understanding of the toxicology mechanism, two other compounds were used starting in the 1890s. calcium arsenate and arsenate of lead were used widely as insecticides until the discovery of DDT in 1942.
In small doses, soluble arsenic compounds act as , and were once popular as medicine by people in the mid-18th to 19th centuries;
Arsenic was also used in various agricultural insecticides and poisons. For example, lead hydrogen arsenate was a common insecticide on , but contact with the compound sometimes resulted in brain damage among those working the sprayers. In the second half of the 20th century, monosodium methyl arsenate (MSMA) and disodium methyl arsenate (DSMA) – less toxic organic forms of arsenic – replaced lead arsenate in agriculture. These organic arsenicals were in turn phased out in the United States by 2013 in all agricultural activities except cotton farming.
The biogeochemistry of arsenic is complex and includes various adsorption and desorption processes. The toxicity of arsenic is connected to its solubility and is affected by pH. Arsenite () is more soluble than arsenate () and is more toxic; however, at a lower pH, arsenate becomes more mobile and toxic. It was found that addition of sulfur, phosphorus, and iron oxides to high-arsenite soils greatly reduces arsenic phytotoxicity.
Arsenic is used as a feed additive in Poultry farming and Pig farming, in particular it was used in the U.S. until 2015 to increase weight gain, improve feed efficiency, and prevent disease. An example is roxarsone, which had been used as a broiler starter by about 70% of U.S. broiler growers. In 2011, Alpharma, a subsidiary of Pfizer Inc., which produces roxarsone, voluntarily suspended sales of the drug in response to studies showing elevated levels of inorganic arsenic, a carcinogen, in treated chickens. A successor to Alpharma, Zoetis, continued to sell nitarsone until 2015, primarily for use in turkeys.
A 2008 paper reports success in locating tumors using arsenic-74 (a positron emitter). This isotope produces clearer PET scan images than the previous radioactive agent, iodine-124, because the body tends to transport iodine to the thyroid gland producing signal noise. of arsenic have shown ability to kill cancer cells with lesser cytotoxicity than other arsenic formulations.
In 2008, bacteria were discovered that employ a version of photosynthesis in the absence of oxygen with arsenites as , producing arsenates (just as ordinary photosynthesis uses water as electron donor, producing molecular oxygen). Researchers conjecture that, over the course of history, these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive. One strain, PHS-1, has been isolated and is related to the gammaproteobacterium Ectothiorhodospira shaposhnikovii. The mechanism is unknown, but an encoded Arr enzyme may function in reverse to its known homologues.
In 2010, researchers reported the discovery of a strain of the bacterium Halomonas (designated GFAJ-1) that was allegedly capable of substituting arsenic for phosphorus in its biomolecules, including DNA, when grown in an arsenic-rich, phosphate-limited environment. This claim, published in Science, suggested that arsenic could potentially serve as a building block of life in place of phosphorus, challenging long-standing assumptions about biochemical requirements for life on Earth.
The claim was met with widespread skepticism. Subsequent studies provided evidence contradicting the initial findings. One follow-up study published in Science in 2011 demonstrated that GFAJ-1 still requires phosphate to grow and does not incorporate arsenate into its DNA in any biologically significant way. Another independent investigation in 2012 used more sensitive techniques to purify and analyze the DNA of GFAJ-1 and found no detectable arsenate incorporated into the DNA backbone. The authors concluded that the original observations were likely due to experimental contamination or insufficient purification methods. Together, these studies reaffirmed phosphorus as an essential element for all known forms of life. In 2025, the journal Science formally retracted the original paper, citing a lack of sufficient experimental support for its key conclusions, though the authors continued to stand by their data.
Some evidence indicates that arsenic is an essential trace mineral in mammals.Anke M. (1986) "Arsenic", pp. 347–372 in Mertz W. (ed.), Trace elements in human and Animal Nutrition, 5th ed. Orlando, FL: Academic Press
Experimental studies in rodents and livestock have shown that arsenic deprivation can lead to impaired growth, reduced reproductive performance, and abnormal glucose metabolism, suggesting it may play a role in essential metabolic processes. Arsenic has been proposed to participate in methylation reactions, possibly influencing gene regulation and detoxification pathways. However, because the threshold between beneficial and toxic exposure is extremely narrow, arsenic is not currently classified as an essential element for humans, and its physiological role in higher animals remains uncertain.
The Chinese brake fern ( Pteris vittata) hyperaccumulates arsenic from the soil into its leaves and has a proposed use in phytoremediation.
Since the 1980s, residents of the Ba Men region of Inner Mongolia, China have been chronically exposed to arsenic through drinking water from contaminated wells. A 2009 research study observed an elevated presence of skin lesions among residents with well water arsenic concentrations between 5 and 10 μg/L, suggesting that arsenic-induced toxicity may occur at relatively low concentrations with chronic exposure. Overall, 20 of China's 34 provinces have high arsenic concentrations in the groundwater supply, potentially exposing 19 million people to hazardous drinking water.
A study by IIT Kharagpur found high levels of Arsenic in groundwater of 20% of India's land, exposing more than 250 million people. States such as Punjab, Bihar, West Bengal, Assam, Haryana, Uttar Pradesh, and Gujarat have highest land area exposed to arsenic.
In the United States, arsenic is most commonly found in the ground waters of the southwest. Parts of New England, Michigan, Wisconsin, Minnesota and the Dakotas are also known to have significant concentrations of arsenic in ground water. Increased levels of skin cancer have been associated with arsenic exposure in Wisconsin, even at levels below the 10 ppb drinking water standard. According to a recent film funded by the US Superfund, millions of private wells have unknown arsenic levels, and in some areas of the US, more than 20% of the wells may contain levels that exceed established limits.
Low-level exposure to arsenic at concentrations of 100 ppb (i.e., above the 10 ppb drinking water standard) compromises the initial immune response to H1N1 or swine flu infection according to NIEHS-supported scientists. The study, conducted in laboratory mice, suggests that people exposed to arsenic in their drinking water may be at increased risk for more serious illness or death from the virus.
Some Canadians are drinking water that contains inorganic arsenic. Private-dug–well waters are most at risk for containing inorganic arsenic. Preliminary well water analysis typically does not test for arsenic. Researchers at the Geological Survey of Canada have modeled relative variation in natural arsenic hazard potential for the province of New Brunswick. This study has important implications for potable water and health concerns relating to inorganic arsenic.
Epidemiological evidence from Chile shows a dose-dependent connection between chronic arsenic exposure and various forms of cancer, in particular when other risk factors, such as cigarette smoking, are present. These effects have been demonstrated at contaminations less than 50 ppb. Arsenic is itself a constituent of tobacco smoke.
Analyzing multiple epidemiological studies on inorganic arsenic exposure suggests a small but measurable increase in risk for bladder cancer at 10 ppb. According to Peter Ravenscroft of the Department of Geography at the University of Cambridge, roughly 80 million people worldwide consume between 10 and 50 ppb arsenic in their drinking water. If they all consumed exactly 10 ppb arsenic in their drinking water, the previously cited multiple epidemiological study analysis would predict an additional 2,000 cases of bladder cancer alone. This represents a clear underestimate of the overall impact, since it does not include lung or skin cancer, and explicitly underestimates the exposure. Those exposed to levels of arsenic above the current WHO standard should weigh the costs and benefits of arsenic remediation.
Early (1973) evaluations of the processes for removing dissolved arsenic from drinking water demonstrated the efficacy of co-precipitation with either iron or aluminium oxides. In particular, iron as a coagulant was found to remove arsenic with an efficacy exceeding 90%. Several adsorptive media systems have been approved for use at point-of-service in a study funded by the United States Environmental Protection Agency (US EPA) and the National Science Foundation (NSF). A team of European and Indian scientists and engineers have set up six arsenic treatment plants in West Bengal based on in-situ remediation method (SAR Technology). This technology does not use any chemicals and arsenic is left in an insoluble form (+5 state) in the subterranean zone by recharging aerated water into the aquifer and developing an oxidation zone that supports arsenic oxidizing micro-organisms. This process does not produce any waste stream or sludge and is relatively cheap.
Another effective and inexpensive method to avoid arsenic contamination is to sink wells 500 feet or deeper to reach purer waters. A recent 2011 study funded by the US National Institute of Environmental Health Sciences' Superfund Research Program shows that deep sediments can remove arsenic and take it out of circulation. In this process, called adsorption, arsenic sticks to the surfaces of deep sediment particles and is naturally removed from the ground water.
Magnetic separations of arsenic at very low magnetic field with high-surface-area and monodisperse magnetite (Fe3O4) nanocrystals have been demonstrated in point-of-use water purification. Using the high specific surface area of Fe3O4 nanocrystals, the mass of waste associated with arsenic removal from water has been dramatically reduced.
Epidemiological studies have suggested a correlation between chronic consumption of drinking water contaminated with arsenic and the incidence of all leading causes of mortality. The literature indicates that arsenic exposure is causative in the pathogenesis of diabetes.
Chaff-based filters have recently been shown to reduce the arsenic content of water to 3 μg/L. This may find applications in areas where the potable water is extracted from underground .
Arsenic may be solubilized by various processes. When pH is high, arsenic may be released from surface binding sites that lose their positive charge. When water level drops and sulfide minerals are exposed to air, arsenic trapped in sulfide minerals can be released into water. When organic carbon is present in water, bacteria are fed by directly reducing As(V) to As(III) or by reducing the element at the binding site, releasing inorganic arsenic. How Does Arsenic Get into the Groundwater. Civil and Environmental Engineering. University of Maine
The aquatic transformations of arsenic are affected by pH, reduction-oxidation potential, organic matter concentration and the concentrations and forms of other elements, especially iron and manganese. The main factors are pH and the redox potential. Generally, the main forms of arsenic under oxic conditions are , , , and at pH 2, 2–7, 7–11 and 11, respectively. Under reducing conditions, is predominant at pH 2–9.
Oxidation and reduction affects the migration of arsenic in subsurface environments. Arsenite is the most stable soluble form of arsenic in reducing environments and arsenate, which is less mobile than arsenite, is dominant in oxidizing environments at neutral pH. Therefore, arsenic may be more mobile under reducing conditions. The reducing environment is also rich in organic matter which may enhance the solubility of arsenic compounds. As a result, the adsorption of arsenic is reduced and dissolved arsenic accumulates in groundwater. That is why the arsenic content is higher in reducing environments than in oxidizing environments.Zeng Zhaohua, Zhang Zhiliang (2002). "The formation of As element in groundwater and the controlling factor". Shanghai Geology 87 (3): 11–15.
The presence of sulfur is another factor that affects the transformation of arsenic in natural water. Arsenic can precipitate when metal sulfides form. In this way, arsenic is removed from the water and its mobility decreases. When oxygen is present, bacteria oxidize reduced sulfur to generate energy, potentially releasing bound arsenic.
Redox reactions involving Fe also appear to be essential factors in the fate of arsenic in aquatic systems. The reduction of iron oxyhydroxides plays a key role in the release of arsenic to water. So arsenic can be enriched in water with elevated Fe concentrations. Under oxidizing conditions, arsenic can be mobilized from pyrite or iron oxides especially at elevated pH. Under reducing conditions, arsenic can be mobilized by reductive desorption or dissolution when associated with iron oxides. The reductive desorption occurs under two circumstances. One is when arsenate is reduced to arsenite which adsorbs to iron oxides less strongly. The other results from a change in the charge on the mineral surface which leads to the desorption of bound arsenic.Thomas, Mary Ann (2007). "The Association of Arsenic With Redox Conditions, Depth, and Ground-Water Age in the Glacial Aquifer System of the Northern United States". U.S. Geological Survey, Virginia. pp. 1–18.
Some species of bacteria catalyze redox transformations of arsenic. Dissimilatory arsenate-respiring prokaryotes (DARP) speed up the reduction of As(V) to As(III). DARP use As(V) as the electron acceptor of anaerobic respiration and obtain energy to survive. Other organic and inorganic substances can be oxidized in this process. Chemoautotrophic arsenite oxidizers (CAO) and heterotrophic arsenite oxidizers (HAO) convert As(III) into As(V). CAO combine the oxidation of As(III) with the reduction of oxygen or nitrate. They use obtained energy to fix produce organic carbon from CO2. HAO cannot obtain energy from As(III) oxidation. This process may be an arsenic detoxification mechanism for the bacteria.
Equilibrium thermodynamic calculations predict that As(V) concentrations should be greater than As(III) concentrations in all but strongly reducing conditions, i.e. where sulfate reduction is occurring. However, abiotic redox reactions of arsenic are slow. Oxidation of As(III) by dissolved O2 is a particularly slow reaction. For example, Johnson and Pilson (1975) gave Half-life for the oxygenation of As(III) in seawater ranging from several months to a year. In other studies, As(V)/As(III) ratios were stable over periods of days or weeks during water sampling when no particular care was taken to prevent oxidation, again suggesting relatively slow oxidation rates. Cherry found from experimental studies that the As(V)/As(III) ratios were stable in anoxic solutions for up to 3 weeks but that gradual changes occurred over longer timescales. Sterile water samples have been observed to be less susceptible to speciation changes than non-sterile samples. Oremland found that the reduction of As(V) to As(III) in Mono Lake was rapidly catalyzed by bacteria with rate constants ranging from 0.02 to 0.3-day−1.
Although discontinued, this application is also one of the most concerning to the general public. The vast majority of older Timber treatment wood was treated with CCA. CCA lumber is still in widespread use in many countries, and was heavily used during the latter half of the 20th century as a structural and outdoor building material. Although the use of CCA lumber was banned in many areas after studies showed that arsenic could leach out of the wood into the surrounding soil (from playground equipment, for instance), a risk is also presented by the burning of older CCA timber. The direct or indirect ingestion of wood ash from burnt CCA lumber has caused fatalities in animals and serious poisonings in humans; the lethal human dose is approximately 20 grams of ash. Scrap CCA lumber from construction and demolition sites may be inadvertently used in commercial and domestic fires. Protocols for safe disposal of CCA lumber are not consistent throughout the world. Widespread landfill disposal of such timber raises some concern, but other studies have shown no arsenic contamination in the groundwater.
Bioremediation requires careful evaluation and design in accordance with existing conditions. Some sites may require the addition of an electron acceptor while others require microbe supplementation (bioaugmentation). Regardless of the method used, only constant monitoring can prevent future contamination.
The major drawbacks of coagulation and flocculation are the costly disposal of arsenate-concentrated sludge, and possible secondary contamination of environment. Moreover, coagulents such as iron may produce ion contamination that exceeds safety levels.
The International Agency for Research on Cancer (IARC) recognizes arsenic and inorganic arsenic compounds as group 1 carcinogens, and the EU lists arsenic trioxide, arsenic pentoxide, and arsenate salts as category 1 .
Arsenic is known to cause arsenicosis when present in drinking water, "the most common species being arsenate ; and arsenite ;".
In 2008, based on its ongoing testing of a wide variety of American foods for toxic chemicals, Total Diet Study and Toxic Elements Program the U.S. Food and Drug Administration set the "level of concern" for inorganic arsenic in apple and pear juices at 23 ppb, based on non-carcinogenic effects, and began blocking importation of products in excess of this level; it also required recalls for non-conforming domestic products. In 2011, the national Dr. Oz television show broadcast a program highlighting tests performed by an independent lab hired by the producers. Though the methodology was disputed (it did not distinguish between organic and inorganic arsenic) the tests showed levels of arsenic up to 36 ppb. In response, the FDA tested the worst brand from the Dr. Oz show and found much lower levels. Ongoing testing found 95% of the apple juice samples were below the level of concern. Later testing by Consumer Reports showed inorganic arsenic at levels slightly above 10 ppb, and the organization urged parents to reduce consumption. In July 2013, on consideration of consumption by children, chronic exposure, and carcinogenic effect, the FDA established an "action level" of 10 ppb for apple juice, the same as the drinking water standard.
Concern about arsenic in rice in Bangladesh was raised in 2002, but at the time only Australia had a legal limit for food (one milligram per kilogram, or 1000 ppb). Concern was raised about people who were eating U.S. rice exceeding WHO standards for personal arsenic intake in 2005. In 2011, the People's Republic of China set a food standard of 150 ppb for arsenic.
In the United States in 2012, testing by separate groups of researchers at the Children's Environmental Health and Disease Prevention Research Center at Dartmouth College (early in the year, focusing on urinary levels in children) and Consumer Reports (in November) found levels of arsenic in rice that resulted in calls for the FDA to set limits. Lawmakers Urge FDA to Act on Arsenic Standards. Foodsafetynews.com (24 February 2012). Retrieved 2012-05-23. The FDA released some testing results in September 2012, and as of July 2013, is still collecting data in support of a new potential regulation. It has not recommended any changes in consumer behavior.
Consumer Reports recommended:
Arsenic disrupts ATP production through several mechanisms. At the level of the citric acid cycle, arsenic inhibits lipoic acid, which is a cofactor for pyruvate dehydrogenase. By competing with phosphate, arsenate uncouples oxidative phosphorylation, thus inhibiting energy-linked reduction of NAD+, mitochondrial respiration and ATP synthesis. Hydrogen peroxide production is also increased, which, it is speculated, has potential to form reactive oxygen species and oxidative stress. These metabolic interferences lead to death from multi-system organ failure. The organ failure is presumed to be from necrotic cell death, not apoptosis, since energy reserves have been too depleted for apoptosis to occur.
The conversion between As(III) and As(V) is a large factor in arsenic environmental contamination. According to Croal, Gralnick, Malasarn and Newman, "the understanding of what stimulates As(III) oxidation and/or limits As(V) reduction is relevant for bioremediation of contaminated sites (Croal). The study of chemolithoautotrophic As(III) oxidizers and the heterotrophic As(V) reducers can help the understanding of the oxidation and/or reduction of arsenic.
Characteristics
Physical characteristics
Isotopes
Chemistry
Compounds
Inorganic compounds
Alloys
Organoarsenic compounds
Occurrence and production
25,000 T 8,800 T 1,500 T 1,000 T 52 T 45 T 36,400 T
History
Applications
Agricultural
Medical use
Alloys
Military
Other uses
Biological role
Bacteria
Potential role in higher animals
Heredity
Biomethylation
Environmental issues
Exposure
In Europe, an analysis based on 20,000 soil samples across all 28 countries show that 98% of sampled soils have concentrations less than 20 mg/kg. In addition, the arsenic hotspots are related to both frequent fertilization and close distance to mining activities. Chronic exposure to arsenic, particularly through contaminated drinking water and food, has also been linked to long-term impacts on cognitive function, including reduced verbal IQ and memory.
Occurrence in drinking water
San Pedro de Atacama
Hazard maps for contaminated groundwater
Redox transformation of arsenic in natural waters
Wood preservation in the US
Mapping of industrial releases in the US
Bioremediation
Arsenic removal
Toxicity and precautions
Classification
Legal limits, food, and drink
A 2014 World Health Organization advisory conference was scheduled to consider limits of 200–300 ppb for rice.
Reducing arsenic content in rice
Occupational exposure limits
Argentina Confirmed human carcinogen Australia TWA 0.05 mg/m3 – Carcinogen Belgium TWA 0.1 mg/m3 – Carcinogen Bulgaria Confirmed human carcinogen Canada TWA 0.01 mg/m3 Colombia Confirmed human carcinogen Denmark TWA 0.01 mg/m3 Finland Carcinogen Egypt TWA 0.2 mg/m3 Hungary Ceiling concentration 0.01 mg/m3 – Skin, carcinogen India TWA 0.2 mg/m3 Japan Group 1 carcinogen Jordan Confirmed human carcinogen Mexico TWA 0.2 mg/m3 New Zealand TWA 0.05 mg/m3 – Carcinogen Norway TWA 0.02 mg/m3 Philippines TWA 0.5 mg/m3 Poland TWA 0.01 mg/m3 Singapore Confirmed human carcinogen South Korea TWA 0.01 mg/m3 Korea Occupational Safety & Health Agency . kosha.or.kr Sweden TWA 0.01 mg/m3 Thailand TWA 0.5 mg/m3 Turkey TWA 0.5 mg/m3 United Kingdom TWA 0.1 mg/m3 United States TWA 0.01 mg/m3 Vietnam Confirmed human carcinogen
Ecotoxicity
Toxicity in animals
Arsenic Rat 763 mg/kg oral Arsenic Mouse 145 mg/kg oral Calcium arsenate Rat 20 mg/kg oral Calcium arsenate Mouse 794 mg/kg oral Calcium arsenate Rabbit 50 mg/kg oral Calcium arsenate Dog 38 mg/kg oral Lead arsenate Rabbit 75 mg/kg oral Arsenic trioxide (As(III)) Mouse 26 mg/kg oral Arsenite (As(III)) Mouse 8 mg/kg im Arsenate (As(V)) Mouse 21 mg/kg im MMA (As(III)) Hamster 2 mg/kg ip MMA (As(V)) Mouse 916 mg/kg oral DMA (As(V)) Mouse 648 mg/kg oral im = injected intramuscularly
ip = administered intraperitoneally
Biological mechanism
Exposure risks and remediation
Treatment
Footnotes
See also
Bibliography
Further reading
External links
|
|