Huaynaputina ( ; ) is a volcano in a volcanic high plateau in southern Peru. Lying in the Central Volcanic Zone of the Andes, it was formed by the subduction of the oceanic Nazca Plate under the continental South American Plate. Huaynaputina is a large volcanic crater, which lacks an identifiable mountain profile, with an outer stratovolcano and three younger volcanic vents within an amphitheatre-shaped structure that is either a former caldera or a remnant of glacial erosion. The volcano has erupted dacite magma.
Huaynaputina has erupted several times during the Holocene, including on 19February 1600 – the largest recorded eruption ever witnessed in South America – which continued with a series of events into March. Witnessed by people in the city of Arequipa, it killed at least 1,000–1,500 people in the region, wiped out vegetation, buried the surrounding area with of volcanic rock, and damaged infrastructure and economic resources. The eruption had a significant impact on Earth's climate, causing a volcanic winter: temperatures in the Northern Hemisphere decreased; cold waves hit parts of Europe, Asia, and the Americas; and the climate disruption may have played a role in the onset of the Little Ice Age. Floods, famines, and social upheavals resulted, including a probable link with the Russian famine of 1601–1603 and Time of Troubles. This eruption has been computed to measure 6 on the Volcanic Explosivity Index (VEI).
The volcano has not erupted since 1600. There are in the amphitheatre-shaped structure, and occur in the region, some of which have been associated with Huaynaputina. The volcano lies in a remote region where there is little human activity, but about 30,000 people live in the immediately surrounding area, and another one million in the Arequipa metropolitan area. If an eruption similar to the 1600 event were to occur, it would quite likely lead to a high death toll and cause substantial socioeconomic disruption. The Peruvian Geophysical Institute announced in 2017 that Huaynaputina would be monitored by the Southern Volcanological Observatory, and seismic observation began in 2019.
Huaynaputina is in the Omate District and Quinistaquillas Districts, which are part of the General Sánchez Cerro Province in the Moquegua Region of southern Peru. The town of Omate lies southwest of Huaynaputina. The city of Moquegua is south-southwest of the volcano and Arequipa is to its north-northwest.
The region is generally remote and the terrain extreme. The area around Huaynaputina is not easily accessible and human activity is low. Within of Huaynaputina there are a number of small farms. A cattle-grazing footpath leads from Quinistaquillas to the volcano, and it is possible to approach the volcano over surrounding ash plains. The landscapes around the volcano have unique characteristics that make them an important geological heritage.
One of these funnel-shaped vents is a trough that cuts into the amphitheatre. The trough appears to be a remnant of a fissure vent. A second vent appears to have been about wide before the development of a third vent, which has mostly obscured the first two. The third vent is steep-walled, with a depth of ; it contains a pit that is wide, set within a small mound that is in part nested within the second vent. This third vent is surrounded by concentric faults. At least one of the vents has been described as an ash cone. A fourth vent lies on the southern slope of the composite volcano outside of the amphitheatre and has been described as a maar. It is about wide and deep and appears to have formed during a phreatomagmatic eruption. These vents lie at an elevation of about , making them among the highest vents of a Plinian eruption in the world.
Slumps have buried parts of the amphitheatre. Dacitic dykes crop out within the amphitheatre and are aligned along a northwest–south trending lineament that the younger vents are also located on. These dykes and a dacitic lava dome of similar composition were formed before the 1600 eruption. Faults with recognizable Fault scarp occur within the amphitheatre and have offset the younger vents; some of these faults existed before the 1600 eruption while others were activated during the event.
There are about 400 Pliocene–Quaternary volcanoes in Peru, with Quaternary activity occurring only in the southern part of the country. Peruvian volcanoes are part of the Central Volcanic Zone. Volcanic activity in that zone has moved eastward since the Jurassic. Remnants of the older volcanism persist in the coastal Cordillera de la Costa but the present-day volcanic arc lies in the Andes, where it is defined by . Many Peruvian volcanoes are poorly studied because they are remote and difficult to access.
The basement underneath Huaynaputina is formed by almost sediments and Intrusive rock of Paleozoic to Mesozoic age including the Yura Group, as well as the Cretaceous Matalaque Formation of volcanic origin – these are all units of rock that existed before the formation of Huaynaputina. During the Tertiary period, these were overlaid by a total of deposits from the ignimbrite Capillune, Llallahui and Sencca Formations – all older rock units. Cretaceous sediments and Paleogene–Neogene volcanic rocks form the high plateau around Huaynaputina. The emplacement of the Capillune Formation continued into the earliest Pliocene; subsequently the Plio-Pleistocene Barroso Group was deposited. It includes the composite volcano that hosts Huaynaputina as well as ignimbrites that appear to come from . One such caldera is located just south of Huaynaputina. The late Pleistocene to Holocene volcanoes have been classified as the Arequipa Volcanics.
The amount of volatiles in the magma appears to have decreased during the 1600 eruption, indicating that it originated either in two separate or from one zoned chamber. This may explain changes in the eruption phenomena during the 1600 activity as the "Dacite 1" rocks erupted early during the 1600 event were more buoyant and contained more gas and thus drove a Plinian eruption, while the latter "Dacite 2" rocks were more viscous and only generated Vulcanian eruptions. Interactions with the crust and crystal fractionation processes were involved in the genesis of the magmas as well, with the so-called "Dacite 1" geochemical suite forming deep in the crust, while the "Dacite 2" geochemical suite appears to have interacted with the upper crust.
The rocks had a temperature of about when they were erupted, with the "Dacite 1" being hotter than the "Dacite 2". Their formation may have been stimulated by the entry of mafic magmas into the magmatic system; such an entry of new magma in a volcanic system is often the trigger for explosive eruptions. The magmas erupted early during the 1600 event (in the first stage of the eruption) appear to have originated from depths of more than ; petrology analysis indicates that some magmas came from depths greater than and others from about . An older hypothesis by de Silva and Francis held that the entry of water into the magmatic system may have triggered the eruption. A 2006 study argues that the entry of new dacitic magma into an already existing dacitic magma system triggered the 1600 eruption; furthermore movement of deep andesitic magmas that had generated the new dacite produced movements within the volcano.
Recently emplaced, postglacial dacite bodies occur in the Huaynaputina area, some of which probably formed shortly before the 1600 eruption. Cerro Las Chilcas also predates the 1600 eruption and appears to be the earliest volcanic centre in the area. The Cerro El Volcán dome formed during the Quaternary and may be the remnant of a cluster of lava domes south of Huaynaputina.
The existence of a volcano at Huaynaputina was not recognized before the 1600 eruption, with no known previous eruptions other than fumarole activity. As a result, the 1600 eruption has been referred to as an instance of monogenetic volcanism. The pre-1600 topography of the volcano was described as "a low ridge in the center of a Sierra", and it is possible that a cluster of lava domes existed at the summit before the 1600 eruption which was blown away during the event.
The last eruption before 1600 may have preceded that year by several centuries, based on the presence of volcanic eruption products buried under soil. Native people reportedly offered sacrifices and offerings to the mountain such as birds, personal clothing and sheep, although it is known that non-volcanic mountains in southern Peru received offerings as well. There have been no eruptions since 1600; a report of an eruption in 1667 is unsubstantiated and unclear owing to the sparse historical information. It probably reflects an eruption at Ubinas instead.
occur in the region and some of these have been associated with Huaynaputina; these include Candagua and Palcamayo northeast, Agua Blanca and Cerro Reventado southeast from the volcano on the Río Tambo and Ullucan almost due west. The springs have temperatures ranging from and contain large amounts of dissolved salts. Cerro Reventado and Ullucan appear to be fed from magmatic water and a deep reservoir, while Agua Blanca is influenced by surface waters.
The eruption of 1600 was initially attributed to Ubinas volcano and sometimes to El Misti. Priests observed and recorded the eruption from Arequipa, and the friar Antonio Vázquez de Espinosa wrote a second-hand account of the eruption based on a witness's report from the city. The scale of the eruption and its impact on climate have been determined from historical records, tree ring data, the position of , the thickness of and ice, plant times, wine harvests and coral growth. Stratigraphically, the eruption deposits have been subdivided into five formations.
A first Plinian stage took place on 19 and 20February, accompanied by an increase of earthquake activity. The first Plinian event lasted for about 20 hours and formed pumice deposits close to the vent that were thick. The pumice was buried by the ash erupted during this stage, which has been recorded as far as Antarctica. This stage of the eruption produced at least of rocks, comprising the bulk of the output from the 1600 eruption. A sustained eruption column about high likely created a mushroom cloud that darkened the sky, obscuring the sun and the stars. Afterwards, collapses in the amphitheatre and within the vent enlarged both features; they also decreased the intensity of the eruption. A first pyroclastic flow was deposited already during this time when the column became unstable.
The Plinian stage was channelled by a fracture and had the characteristics of a fissure-fed eruption. Possibly, the second vent formed during this stage, but another interpretation is that the second vent is actually a collapse structure that formed late during the eruption. Much of the excavation of the conduit took place during this stage.
After a hiatus the volcano began erupting pyroclastic flows; these were mostly constrained by the topography and were erupted in stages, intercalated by ash fall that extended to larger distances. Most of these pyroclastic flows accumulated in valleys radiating away from Huaynaputina, reaching distances of from the vents. Winds blew ash from the pyroclastic flows, and rain eroded freshly deposited pyroclastic deposits. Ash fall and pyroclastic flows alternated during this stage, probably caused by brief obstructions of the vent; at this time a lava dome formed within the second vent. A change in the composition of the erupted rocks occurred, the "Dacite 1" geochemical suite being increasingly modified by the "Dacite 2" geochemical suite that became dominant during the third stage.
Pyroclastic flows ran down the slopes of the volcano, entered the Río Tambo valley and formed dams on the river, probably mainly at the mouth of the Quebrada Aguas Blancas; one of the two dammed lakes was about long. When the dams failed, the lakes released hot water with floating pumice and debris down the Río Tambo. The deposits permanently altered the course of the river. The volume of the ignimbrites has been estimated to be about , excluding the ash that was erupted during this stage. The pyroclastic flows along with pumice falls covered an area of about .
In the third stage, Vulcanian eruptions took place at Huaynaputina and deposited another ash layer; it is thinner than the layer produced by the first stage eruption and appears to be partly of phreatomagmatic origin. During this stage the volcano also emitted ; the total volume of erupted tephra is about . This third stage destroyed the lava dome and formed the third vent, which then began to settle along the faults as the underlying magma was exhausted. The fourth vent formed late during the eruption, outside of the amphitheatre.
The total volume of volcanic rocks erupted by Huaynaputina was about , in the form of dacitic tephra, pyroclastic flows and pyroclastic surges, although smaller estimates have been proposed. It appears that the bulk of the fallout originated during the first stage of the eruption, the second and third stage contributing a relatively small portion. For comparison, another large Holocene eruption in the Central Andes—the eruption of Cerro Blanco in Argentina about 2,300 ± 60 BCE—produced a bulk volume of of rock, equivalent to a Volcanic Explosivity Index of 7. Estimates have been made for the dense-rock equivalent of the Huaynaputina eruption, ranging between , with a 2019 estimate, that accounts for far-flung tephra, of .
Some tephra was deposited on the volcanoes El Misti and Ubinas, into lakes of southern Peru such as Laguna Salinas, possibly into a peat bog close to Sabancaya volcano where it reached thicknesses of , as far south as in the Peruvian Atacama Desert where it forms discontinuous layers, and possibly to the Cordillera Vilcabamba in the north. Ash layers about thick were noted in the of Quelccaya in Peru and Nevado Sajama in Bolivia, although the deposits in Sajama may instead have originated from Ticsani volcano. Reports of Huaynaputina-related ashfall in Nicaragua are implausible, as Nicaragua is far from Huaynaputina and has several local volcanoes that could generate tephra fallout.
The Huaynaputina ash layer has been used as a tephrochronology marker for the region, for example in archeology and in geology, where it was used to date an eruption in the Andagua volcanic field and fault movements that could have produced destructive . The ash layer, which may have reached as far as Rongbuk Glacier at Mount Everest in the Himalaya, has also been used as a tephrochronological marker in Greenland and Antarctic ice cores. It has been proposed as a marker for the onset of the Anthropocene.
Between 11 and 17 villages within from the volcano were buried by the ash, including Calicanto, Chimpapampa, Cojraque, Estagagache, Moro Moro and San Juan de Dios south and southwest of Huaynaputina. The Huayruro Project began in 2015 and aims to rediscover these towns, and Calicanto was christened one of the 100 International Union of Geological Sciences heritage sites in 2021. The death toll in villages from toxic gases and ash fall was severe; reportedly, some villages lost their entire populations to the eruption and a priest visiting Omate after the eruption claimed to have "found its inhabitants dead and cooked with the fire of the burning stones". Estagagache has been deemed the "Pompeii of Peru", and the Peruvian INGEMMET has published reports detailing geotourism locations around the volcano.
The impact was noticeable in Arequipa, where up to of ash fell causing roofs to collapse under its weight. Ash fall was reported in an area of across Peru, Chile and Bolivia, mostly west and south from the volcano, including in La Paz, Cuzco, Camaná, where it was thick enough to cause palm trees to collapse, Potosi, Arica as well as in Lima where it was accompanied by sounds of explosions. Ships observed ash fall from as far as west of the coast.
The surviving local population fled during the eruption and wild animals sought refuge in the city of Arequipa. The site of Torata Alta, a former Inca administrative centre, was destroyed during the Huaynaputina eruption and after a brief reoccupation abandoned in favour of Torata. Likewise, the occupation of the site of Pillistay close to Camana ended shortly after the eruption. Together with earthquakes unrelated to the eruption and El Niño-related flooding, the Huaynaputina eruption led to the abandonment of some irrigated land in Carrizal, Peru.
The eruption claimed 1,000–1,500 fatalities, not counting these from earthquakes or flooding on the Río Tambo. In Arequipa, houses and the cathedral collapsed during mass after an earthquake on 27February, concomitant with the beginning of the second stage of the eruption. were reported during the eruption as well. Flooding ensued when volcanic dams in the Río Tambo broke, and debris and lahars reached the Pacific Ocean 120–130 km () away. Occasionally the flows that reached the Pacific Ocean have been described as pyroclastic flows. Reportedly, fish were killed by the flood in the Pacific Ocean at the mouth of the river.
Damage to infrastructure and economic resources of the southern then-Viceroyalty of Peru was severe. The Peruvian wine in southern Peru was wiped out; chroniclers tell how all wines were lost during the eruption and the tsunamis that accompanied it. Before the eruption the Moquegua region had been a source of wine, and afterwards the focus of viticulture shifted to Pisco, Ica and Nazca; later sugarcane became an important crop in Moquegua valley. Tephra fallout fertilized the soil and may have allowed increased agriculture in certain areas. Cattle ranching also was severely impacted by the 1600 eruption. The Arequipa and Moquegua areas were depopulated by epidemics and famine; recovery only began towards the end of the 17th century. Indigenous people from the Quinistacas valley moved to Moquegua because the valley was covered with ash; population movements resulting from the Huaynaputina eruption and a 1604 earthquake may have occurred as far away as Bolivia. The then-Viceroy of Peru, Luis de Velasco, 1st Marquess of Salinas del Río Pisuerga, arrived weeks later in Arequipa. After returning to Lima, he sent dispatches to king Philip III of Spain and the Council of the Indies to request economic assistance. Religious and political authorities mobilized to respond to the eruption and its effects. Taxes were suspended for years, and indigenous workers were recruited from as far as Lake Titicaca and Cuzco to aid in the reconstruction. Arequipa went from being a relatively wealthy city to be a place of famine and disease in the years after the eruption, and its port of Chule was abandoned. Despite the damage, recovery was fast in Arequipa. The population declined in the region, although some of the decline may be due to earthquakes and before 1600. New administrative surveys – called revisitas – had to be carried out in the Colca Valley in 1604 after population losses and the effects of the Huaynaputina eruption had reduced the ability of the local population to pay the .
News of the event was propagated throughout the American colonies and to Europe. Both Christians and native people of Peru interpreted the eruption in religious context. The Spaniards interpreted the event as a divine punishment, while native people interpreted it as a deity fighting against the Spanish invaders; one myth states that Omate volcano (Huaynaputina) wanted the assistance of Arequipa volcano (probably El Misti) to destroy the Spaniards but the latter could not, claiming that he was Christian now, and so Huaynaputina proceeded alone. Another states that instead, Huaynaputina asked Machuputina (Misti) to deal with the Catholic Arequipa; when the latter refused as it too had become Catholic Huaynaputina exploded from anger. El Misti had erupted less than two centuries before, and local populations were further concerned that after Huaynaputina, El Misti might erupt next. As a result, natives and Franciscan friars threw sacrifices such as of into its crater. in the Tambo valley urged a return to old customs, and processions and sacrifices to Huaynaputina took place. In Arequipa, a new patron saint, San Genaro, was named following the eruption and veneration of Martha – who was believed to have power over earthquakes – increased; she became the city's sole patron saint in 1693.
Reportedly, in November1599 a Jesuit named Alonzo Ruiz had announced in Arequipa that divine punishment would strike the natives for continuing to worship their gods and the Spaniards for promiscuity. Mythology held that before the 1600 eruption the lack of sacrifices had upset the devil. It sent a large snake named chipiroque or pichiniqui to announce "horrifying storms" which eventually ended up killing the natives. Jesuits interpreted this as a deception attempt by the devil. Such prophecies may reflect prior knowledge about the volcanic nature of Huaynaputina. There are reports that a sacrificial offering was underway at the volcano a few days before the eruption.
Acid layers in ice cores from Antarctica and Greenland have been attributed to Huaynaputina, and their discovery led to initial discussion about whether the 1600 eruption had major effects on Earth's climate. In Antarctica these ice cores include both acid layers and volcanic tephra. The total amount of sulfuric acid erupted by Huaynaputina has been estimated at several values:
+List of estimates of sulfuric acid yield of the 1600 eruption |
Other estimates are 50–100 million tons for the sulfur dioxide yield and 23 or 26–55 million tons for the sulfur. In Antarctica the sulfur yield was estimated to be about one-third that of the 1815 Tambora eruption, although the climate impact in the Northern Hemisphere might have been aggravated by the distribution of the aerosols and the occurrence of another volcanic eruption in the Northern Hemisphere in winter 1599/1600; at one Antarctic site the Huaynaputina sulfate layer is thicker than the one from Tambora. Inferences from rock composition usually yield a higher sulfur output than ice core data; this may reflect either ice cores underestimating the amount of sulfur erupted as ice cores only record stratospheric sulfur, ice cores underestimating the amount of sulfur for other reasons or overestimating the amount of sulfur contained within magma-associated fluids. The Huaynaputina eruption was probably unusually rich in sulfur compared to its volume. A large amount of sulfur appears to have been carried in a volatile phase associated with the magma rather than in the magma proper. An even larger amount of sulfur may have originated from a relic hydrothermal system that underpins the volcano, and whose accumulated sulfur would have been mobilized by the 1600 eruption; some contradictions between the sulfur yield inferred from ice core data and these inferred from the magma composition can be resolved this way.
Atmospheric carbon dioxide concentrations in 1610 decreased for reasons unknown; high mortality in the Americas after the European arrival may be the reason, but this decrease could have been at least in part the consequence of the Huaynaputina eruption. The vast tephra fallout of the eruption fell in part over the sea; the fertilizing effect of the tephra may have induced a draw-down of carbon dioxide from the atmosphere.
The eruption had a noticeable impact on growth conditions in the Northern Hemisphere, which were the worst of the last 600 years, with summers being on average colder than the mean. The climate impact has been noted in the growth rings of a centuries-old ocean quahog (a mollusc) individual that was found in Iceland, as well as in tree rings from Taiwan, eastern Tibet, Siberia, the Urals and Yamal Peninsula in Russia, Canada, the Sierra Nevada and White Mountains in the United States, Lake Zaysan in Kazakhstan and in Mexico. Notably, the climate impacts became manifest only in 1601; in the preceding year, they may have been suppressed by a strong El Niño event.
Other climate effects attributed to the Huaynaputina eruption include:
The 1600 eruption of Huaynaputina occurred at the tail end of a cluster of mid-sized volcanic eruptions, which in a climate simulation had a noticeable impact on Earth's energy balance and were accompanied by a 10% growth of Northern Hemisphere sea ice and a weakening of the subpolar gyre which may have begun already before the eruption. Such a change in the ocean currents has been described as being characteristic for the Little Ice Age and mediates numerous effects of the Little Ice Age, such as colder winters.
The Huaynaputina eruption was followed by a drought in what today are the Eastern U.S. and may have hindered the establishment of the colony in Jamestown, Virginia, where mortality from malnutrition was high. The eruption may also have contributed to the disappearance of the Monongahela culture from North America, along with other climate phenomena linked to the El Niño–Southern Oscillation.
The Spanish explorers Sebastián Vizcaíno and Juan de Oñate visited the US west coast and the Colorado River Delta in the years following the Huaynaputina eruption. The effects of this eruption and the activity of other volcanoes – namely, large scale flooding – might have induced them to believe that California was an island; this later became one of the most well known cartography misconceptions of history.
The winter of 1601 was extremely cold in Estonia, Ireland, Latvia and Switzerland, and the ice in the harbour of Riga broke up late. Climate impacts were also reported from Croatia. The 1601 wine harvest was delayed in France, and in Germany it was drastically lower in 1602. Frost continued into summer in Italy and England. A further cold winter occurred in 1602–1603 in Ireland. In Estonia, high mortality and crop failures from 1601 to 1603 led to an at least temporary abandonment of three quarters of all farms. Scotland saw the failure of barley and oat crops in 1602 and a plague outbreak during the preceding year, and in Italy silk prices rose due to a decline in silk production in the peninsula.
In Fennoscandia, the summer of 1601 was one of the coldest in the last four centuries. In Sweden, harvest failures are recorded between 1601 and 1603, with a rainy spring in 1601 reportedly leading to famine. Famine ensued there and in Denmark and Norway during 1602–1603. Finland saw one of the worst barley and rye harvests, and crop yields continued to be poor for some years to follow, accompanied by a colder climate there. The year 1601 was called a "green year" in Sweden and a "straw year" or "year of extensive frosts" in Finland, and it is likely that the 1601 crop failure was among the worst in Finland's history. The Huaynaputina eruption together with other factors led to changes in the social structure of Ostrobothnia, where a number of land holdings were deserted after the eruption and peasants with wider social networks had higher chances to cope with crises than these without.
The summer 1601 was wet, and the winter 1601–1602 was severe. The eruption led to the Russian famine of 1601–1603 after crops failed during these years; it is considered to be the worst famine of Russian history and claimed about two million lives, a third of the country's population. The events initiated the time of social unrest known as the Time of Troubles, and the tzar Boris Godunov was overthrown in part owing to the social impacts of the famine. This social unrest eventually led to a change in the ruling dynasty and interventions from Sweden and Poland.
Weather was anomalous in southern China as well, 1601 seeing a hot autumn and a cold summer and abrupt snowfall. Disease outbreaks occurred afterwards. Reports of snowfall and unusual cold also came from the Yangtze River valley, and summer in the Anhui, Shanghai and Zhejiang provinces began unusually with cold and snowy weather and then became hot.
In Japan, Lake Suwa froze up considerably earlier than normal in 1601, and flooding and continuous rains were accompanied by harvest failures. Korea in 1601 saw an unusually cold spring and summer, followed by a humid and hot mid-summer. Epidemics ensued, although the epidemics in East Asia erupted under different weather conditions and linking them to the Huaynaputina eruption may not be straightforward. On the other hand, temperatures were not unusually cold in Nepal.
During the wet season, often descend from Huaynaputina. In 2010, earthquake activity and noises from the volcano alerted the local population and led to a volcanological investigation. As part of this investigation, seismic activity was recorded around the amphitheatre; there were no earthquakes within it and appeared to be associated mainly with the faults and lineaments in the region. The researchers recommended more extensive seismometer coverage of the area and regular sampling of fumaroles, as well as reconnaissance with georadar and of the electrical potential of the volcano.
|
|