Lightning is a natural phenomenon formed by electrostatic discharges through the atmosphere between two electrically charged regions, either both in the atmosphere or one in the atmosphere and one on the land, temporarily neutralizing these in a near-instantaneous release of an average of between 200 and 7 gigajoules of energy, depending on the type. This discharge may produce a wide range of electromagnetic radiation, from heat created by the rapid movement of , to brilliant flashes of visible light in the form of black-body radiation. Lightning causes thunder, a sound from the shock wave which develops as gases in the vicinity of the discharge experience a sudden increase in pressure. Lightning occurs commonly during as well as other types of energetic weather systems, but volcanic lightning can also occur during volcanic eruptions. Lightning is an atmospheric electrical phenomenon and contributes to the global atmospheric electrical circuit.
The three main kinds of lightning are distinguished by where they occur: either inside a single thundercloud (intra-cloud), between two (cloud-to-cloud), or between a cloud and the ground (cloud-to-ground), in which case it is referred to as a lightning strike. Many other observational variants are recognized, including "heat lightning", which can be seen from a great distance but not heard; dry lightning, which can cause forest fires; and ball lightning, which is rarely observed scientifically.
Humans have deified lightning for millennia. Idiomatic expressions derived from lightning, such as the English expression "bolt from the blue", are common across languages. At all times people have been fascinated by the sight and difference of lightning. The fear of lightning is called astraphobia.
The first known photograph of lightning is from 1847, by Thomas Martin Easterly. The first surviving photograph is from 1882, by William Nicholson Jennings, a photographer who spent half his life capturing pictures of lightning and proving its diversity.
There is growing evidence that lightning activity is increased by particulate emissions (a form of air pollution). However, lightning may also improve air quality and clean greenhouse gases such as methane from the atmosphere, while creating nitrogen oxide and ozone at the same time. Lightning is also the major cause of wildfire, and wildfire can contribute to climate change as well. More studies are warranted to clarify their relationship.
At the same time, the graupel, which is considerably larger and denser, tends to fall or be suspended in the rising air.
The differences in the movement of the precipitation cause collisions to occur. When the rising ice crystals collide with graupel, the ice crystals become positively charged and the graupel becomes negatively charged; see Figure 2. The updraft carries the positively charged ice crystals upward toward the top of the storm cloud. The larger and denser graupel is either suspended in the middle of the thunderstorm cloud or falls toward the lower part of the storm.
The result is that the upper part of the thunderstorm cloud becomes positively charged while the middle to lower part of the thunderstorm cloud becomes negatively charged.
The upward motions within the storm and winds at higher levels in the atmosphere tend to cause the small ice crystals (and positive charge) in the upper part of the thunderstorm cloud to spread out horizontally some distance from the thunderstorm cloud base. This part of the thunderstorm cloud is called the anvil. While this is the main charging process for the thunderstorm cloud, some of these charges can be redistributed by air movements within the storm (updrafts and downdrafts). In addition, there is a small but important positive charge buildup near the bottom of the thunderstorm cloud due to the precipitation and warmer temperatures.
The induced separation of charge in pure liquid water has been known since the 1840s as has the electrification of pure liquid water by the triboelectric effect.Francis, G. W., "Electrostatic Experiments" Oleg D. Jefimenko, Editor, Electret Scientific Company, Star City, 2005
William Thomson (Lord Kelvin) demonstrated that charge separation in water occurs in the usual electric fields at the Earth's surface and developed a continuous electric field measuring device using that knowledge.
The physical separation of charge into different regions using liquid water was demonstrated by Kelvin with the Kelvin water dropper. The most likely charge-carrying species were considered to be the aqueous hydrogen ion and the aqueous hydroxide ion.
The electrical charging of solid water ice has also been considered. The charged species were again considered to be the hydrogen ion and the hydroxide ion.
An electron is not stable in liquid water with respect to a hydroxide ion plus dissolved hydrogen for the time scales involved in thunder storms.Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B. "Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in aqueous solution." J. Phys. Chem. Ref. Data 17, 513–886 (1988).
The charge carrier in lightning is mainly electrons in a plasma. The process of going from charge as ions (positive hydrogen ion and negative hydroxide ion) associated with liquid water or solid water to charge as electrons associated with lightning must involve some form of electro-chemistry, that is, the oxidation and/or the reduction of chemical species. As hydroxide functions as a base and carbon dioxide is an acidic gas, it is possible that charged water clouds in which the negative charge is in the form of the aqueous hydroxide ion, interact with atmospheric carbon dioxide to form aqueous carbonate ions and aqueous hydrogen carbonate ions.
Lightning primarily occurs when warm air is mixed with colder air masses, resulting in atmospheric disturbances necessary for polarizing the atmosphere.
Lightning can also occur during , forest fires, , volcano, and even in the cold of winter, where the lightning is known as thundersnow. New Lightning Type Found Over Volcano? . News.nationalgeographic.com (February 2010). Retrieved on June 23, 2012. tropical cyclone typically generate some lightning, mainly in the rainbands as much as from the center.Pardo-Rodriguez, Lumari (Summer 2009) Lightning Activity in Atlantic Tropical Cyclones: Using the Long-Range Lightning Detection Network (LLDN) . MA Climate and Society, Columbia University Significant Opportunities in Atmospheric Research and Science Program. Hurricane Lightning , NASA, January 9, 2006. The Promise of Long-Range Lightning Detection in Better Understanding, Nowcasting, and Forecasting of Maritime Storms . Long Range Lightning Detection Network
Many factors affect the frequency, distribution, strength and physical properties of a typical lightning flash in a particular region of the world. These factors include ground elevation, latitude, prevailing wind currents, relative humidity, and proximity to warm and cold bodies of water. To a certain degree, the proportions of intra-cloud, cloud-to-cloud, and cloud-to-ground lightning may also vary by season in middle latitudes.
Because human beings are terrestrial and most of their possessions are on the Earth where lightning can damage or destroy them, cloud-to-ground (CG) lightning is the most studied and best understood of the three types, even though in-cloud (IC) and cloud-to-cloud (CC) are more common types of lightning. Lightning's relative unpredictability limits a complete explanation of how or why it occurs, even after hundreds of years of scientific investigation. About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest.
This occurs from both the mixture of warmer and colder , as well as differences in moisture concentrations, and it generally happens at the Weather front. The flow of warm ocean currents past drier land masses, such as the Gulf stream, partially explains the elevated frequency of lightning in the Southeast United States. Because large bodies of water lack the topographic variation that would result in atmospheric mixing, lightning is notably less frequent over the world's oceans than over land. The north pole and south pole are limited in their coverage of thunderstorms and therefore result in areas with the least lightning.
In general, CG lightning flashes account for only 25% of all total lightning flashes worldwide. Since the base of a thunderstorm is usually negatively charged, this is where most CG lightning originates. This region is typically at the elevation where freezing level occurs within the cloud. Freezing, combined with collisions between ice and water, appears to be a critical part of the initial charge development and separation process. During wind-driven collisions, ice crystals tend to develop a positive charge, while a heavier, slushy mixture of ice and water (called graupel) develops a negative charge. Updrafts within a storm cloud separate the lighter ice crystals from the heavier graupel, causing the top region of the cloud to accumulate a positive space charge while the lower level accumulates a negative space charge.
Because the concentrated charge within the cloud must exceed the insulating properties of air, and this increases proportionally to the distance between the cloud and the ground, the proportion of CG strikes (versus CC or IC discharges) becomes greater when the cloud is closer to the ground. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG.Uman (1986) Ch. 8, p. 68.
Lightning is usually produced by cumulonimbus clouds, which have bases that are typically above the ground and tops up to in height.
The place on Earth where lightning occurs most often is over Lake Maracaibo, wherein the Catatumbo lightning phenomenon produces 250 bolts of lightning a day. This activity occurs on average, 297 days a year.Fischetti, M. (2016) Lightning Hotspots, Scientific American 314: 76 (May 2016) The second most lightning density is near the village of Kifuka in the mountains of the eastern Democratic Republic of the Congo, where the elevation is around . On average, this region receives . Other lightning hotspots include Singapore and Lightning Alley in Central Florida.
According to the World Meteorological Organization, on April 29, 2020, a bolt 768 km (477.2 mi) long was observed in the southern U.S.—sixty km (37 mi) longer than the previous distance record (southern Brazil, October 31, 2018). A single flash in Uruguay and northern Argentina on June 18, 2020, lasted for 17.1 seconds—0.37 seconds longer than the previous record (March 4, 2019, also in northern Argentina).
It is well understood that during a thunderstorm there is charge separation and aggregation in certain regions of the cloud; however, the exact processes by which this occurs are not fully understood.
The oppositely charged regions create an electric field within the air between them. This electric field varies in relation to the strength of the surface charge on the base of the thundercloud – the greater the accumulated charge, the higher the electrical field.
It is possible for one end of the leader to fill the oppositely-charged well entirely while the other end is still active. When this happens, the leader end which filled the well may propagate outside of the thundercloud and result in either a cloud-to-air flash or a cloud-to-ground flash. In a typical cloud-to-ground flash, a bidirectional leader initiates between the main negative and lower positive charge regions in a thundercloud. The weaker positive charge region is filled quickly by the negative leader which then propagates toward the inductively-charged ground.
The positively and negatively charged leaders proceed in opposite directions, positive upwards within the cloud and Electric charge towards the earth. Both ionic channels proceed, in their respective directions, in a number of successive spurts. Each leader "pools" ions at the leading tips, shooting out one or more new leaders, momentarily pooling again to concentrate charged ions, then shooting out another leader. The negative leader continues to propagate and split as it heads downward, often speeding up as it gets closer to the Earth's surface.
About 90% of ionic channel lengths between "pools" are approximately in length.Goulde, R.H. (1977) "The lightning conductor", pp. 545–576 in Lightning Protection, R.H. Golde, Ed., Lightning, Vol. 2, Academic Press. The establishment of the ionic channel takes a comparatively long amount of time (hundreds of ) in comparison to the resulting discharge, which occurs within a few dozen microseconds. The electric current needed to establish the channel, measured in the tens or hundreds of , is dwarfed by subsequent currents during the actual discharge.
Initiation of the lightning leader is not well understood. The electric field strength within the thundercloud is not typically large enough to initiate this process by itself. Many hypotheses have been proposed. One hypothesis postulates that showers of relativistic electrons are created by cosmic rays and are then accelerated to higher velocities via a process called runaway breakdown. As these relativistic electrons collide and ionize neutral air molecules, they initiate leader formation. Another hypothesis involves locally enhanced electric fields being formed near elongated water droplets or ice crystals. Percolation theory, especially for the case of biased percolation, describes random connectivity phenomena, which produce an evolution of connected structures similar to that of lightning strikes. A streamer avalanche model has recently been favored by observational data taken by LOFAR during storms.
As negatively charged leaders approach, increasing the localized electric field strength, grounded objects already experiencing corona discharge will Corona breakdown and form upward streamers.
A large electric charge flows along the plasma channel, from the cloud to the ground, neutralising the positive ground charge as electrons flow away from the strike point to the surrounding area. This huge surge of current creates large radial voltage differences along the surface of the ground. Called step potentials, they are responsible for more injuries and deaths in groups of people or of other animals than the strike itself.Deamer, Kacey (August 30, 2016) More Than 300 Reindeer Killed By Lightning: Here's Why. Live Science Electricity takes every path available to it.
Such step potentials will often cause current to flow through one leg and out another, electrocuting an unlucky human or animal standing near the point where the lightning strikes.
The electric current of the return stroke averages 30 kiloamperes for a typical negative CG flash, often referred to as "negative CG" lightning. In some cases, a ground-to-cloud (GC) lightning flash may originate from a positively charged region on the ground below a storm. These discharges normally originate from the tops of very tall structures, such as communications antennas. The rate at which the return stroke current travels has been found to be around 100,000 km/s (one-third of the speed of light).
The massive flow of electric current occurring during the return stroke combined with the rate at which it occurs (measured in microseconds) rapidly superheating the completed leader channel, forming a highly electrically conductive plasma channel. The core temperature of the plasma during the return stroke may exceed , causing it to radiate with a brilliant, blue-white color. Once the electric current stops flowing, the channel cools and dissipates over tens or hundreds of milliseconds, often disappearing as fragmented patches of glowing gas. The nearly instantaneous heating during the return stroke causes the air to expand explosively, producing a powerful shock wave which is heard as thunder.
Each re-strike is separated by a relatively large amount of time, typically 40 to 50 milliseconds, as other charged regions in the cloud are discharged in subsequent strokes. Re-strikes often cause a noticeable "strobe light" effect.Uman (1986) pp. 103–110.
To understand why multiple return strokes utilize the same lightning channel, one needs to understand the behavior of positive leaders, which a typical ground flash effectively becomes following the negative leader's connection with the ground. Positive leaders decay more rapidly than negative leaders do. For reasons not well understood, bidirectional leaders tend to initiate on the tips of the decayed positive leaders in which the negative end attempts to re-ionize the leader network. These leaders, also called recoil leaders, usually decay shortly after their formation. When they do manage to make contact with a conductive portion of the main leader network, a return stroke-like process occurs and a dart leader travels across all or a portion of the length of the original leader. The dart leaders making connections with the ground are what cause a majority of subsequent return strokes.
Each successive stroke is preceded by intermediate dart leader strokes that have a faster rise time but lower amplitude than the initial return stroke. Each subsequent stroke usually re-uses the discharge channel taken by the previous one, but the channel may be offset from its previous position as wind displaces the hot channel.Uman (1986) Ch. 9, p. 78.
Since recoil and dart leader processes do not occur on negative leaders, subsequent return strokes very seldom utilize the same channel on positive ground flashes which are explained later in the article.
The rapidly changing currents also create electromagnetic pulses (EMPs) that radiate outward from the ionic channel. This is a characteristic of all electrical discharges. The radiated pulses rapidly weaken as their distance from the origin increases. However, if they pass over conductive elements such as power lines, communication lines, or metallic pipes, they may induce a current which travels outward to its termination. The surge current is inversely related to the surge impedance: the higher in impedance, the lower the current. This is the Voltage spike that, more often than not, results in the destruction of delicate electronics, electrical appliances, or . Devices known as Surge protector attached in parallel with these lines can detect the lightning flash's transient irregular current, and, through alteration of its physical properties, route the spike to an attached earthing ground, thereby protecting the equipment from damage.
There are variations of each type, such as "positive" versus "negative" CG flashes, that have different physical characteristics common to each which can be measured. Different used to describe a particular lightning event may be attributed to the same or to different events.
CG is the least common, but best understood of all types of lightning. It is easier to study scientifically because it terminates on a physical object, namely the ground, and lends itself to being measured by instruments on the ground. Of the three primary types of lightning, it poses the greatest threat to life and property, since it terminates on the ground or "strikes".
The overall discharge, termed a flash, is composed of a number of processes such as preliminary breakdown, stepped leaders, connecting leaders, return strokes, dart leaders, and subsequent return strokes. The conductivity of the electrical ground, be it soil, fresh water, or saline water, may affect the lightning discharge rate and thus visible characteristics.
There are six different mechanisms theorized to result in the formation of positive lightning.
Contrary to popular belief, positive lightning flashes do not necessarily originate from the anvil or the upper positive charge region and strike a rain-free area outside of the thunderstorm. This belief is based on the outdated idea that lightning leaders are unipolar and originate from their respective charge region.
Positive lightning strikes tend to be much more intense than their negative counterparts. An average bolt of negative lightning carries an electric current of 30,000 (30 kA), and transfers 15 C () of electric charge and 1 joule of energy. Large bolts of positive lightning can carry up to 120 kA and 350 C.Hasbrouck, Richard. Mitigating Lightning Hazards , Science & Technology Review May 1996. Retrieved on April 26, 2009. The average positive ground flash has roughly double the peak current of a typical negative flash, and can produce peak currents up to 400 kA and charges of several hundred coulombs.V. A. Rakov, M. A. Uman, Positive and bipolar lightning discharges to ground, in: Light. Phys. Eff., Cambridge University Press, 2003: pp. 214–240 Furthermore, positive ground flashes with high peak currents are commonly followed by long continuing currents, a correlation not seen in negative ground flashes.
As a result of their greater power, positive lightning strikes are considerably more dangerous than negative strikes. Positive lightning produces both higher peak currents and longer continuing currents, making them capable of heating surfaces to much higher levels which increases the likelihood of a fire being ignited. The long distances positive lightning can propagate through clear air explains why they are known as "bolts from the blue", giving no warning to observers.
Despite the popular misconception that these are positive lightning strikes due to them seemingly originating from the positive charge region, observations have shown that these are in fact negative flashes. They begin as IC flashes within the cloud, the negative leader then exits the cloud from the positive charge region before propagating through clear air and striking the ground some distance away.
Positive lightning has also been shown to trigger the occurrence of upward lightning flashes from the tops of tall structures and is largely responsible for the initiation of sprites several tens of kilometers above ground level. Positive lightning tends to occur more frequently in , as with thundersnow, during intense and in the dissipation stage of a thunderstorm. Huge quantities of extremely low frequency (ELF) and very low frequency (VLF) are also generated.
IC lightning most commonly occurs between the upper anvil portion and lower reaches of a given thunderstorm. This lightning can sometimes be observed at great distances at night as so-called "sheet lightning". In such instances, the observer may see only a flash of light without hearing any thunder.
Another term used for cloud–cloud or cloud–cloud–ground lightning is "Anvil Crawler", due to the habit of charge, typically originating beneath or within the anvil and scrambling through the upper cloud layers of a thunderstorm, often generating dramatic multiple branch strokes. These are usually seen as a thunderstorm passes over the observer or begins to decay. The most vivid crawler behavior occurs in well developed thunderstorms that feature extensive rear anvil shearing.
Aircraft are highly susceptible to being struck due to their metallic fuselages, but lightning strikes are generally not dangerous to them. Due to the conductive properties of aluminium alloy, the fuselage acts as a Faraday cage. Present day aircraft are built to be safe from a lightning strike and passengers will generally not even know that it has happened.
Light travels at about , and sound travels through air at about . An observer can approximate the distance to the strike by timing the interval between the visible lightning and the audible thunder it generates. A lightning flash preceding its thunder by one second would be approximately in distance; a delay of three seconds would indicate a distance of about (3 × 343 m). A flash preceding thunder by five seconds would indicate a distance of approximately (5 × 343 m). Consequently, a lightning strike observed at a very close distance will be accompanied by a sudden clap of thunder, with almost no perceptible time lapse, possibly accompanied by the smell of ozone (O3).
Lightning at a sufficient distance may be seen and not heard; there is data that a lightning storm can be seen at over whereas the thunder travels about . Anecdotally, there are many examples of people saying 'the storm was directly overhead or all-around and yet there was no thunder'. Since thunderclouds can be up to 20 km high, lightning occurring high up in the cloud may appear close but is actually too far away to produce noticeable thunder.
A number of observations by space-based telescopes have revealed even higher energy gamma ray emissions, the so-called terrestrial gamma-ray flashes (TGFs). These observations pose a challenge to current theories of lightning, especially with the recent discovery of the clear signatures of antimatter produced in lightning. Recent research has shown that secondary species, produced by these TGFs, such as electrons, positrons, neutrons or protons, can gain energies of up to several tens of MeV.
Lightning on Venus has been a controversial subject after decades of study. During the Soviet Venera and U.S. Pioneer program missions of the 1970s and 1980s, signals suggesting lightning may be present in the upper atmosphere were detected. The short Cassini–Huygens mission fly-by of Venus in 1999 detected no signs of lightning, but radio pulses recorded by the spacecraft Venus Express (which began orbiting Venus in April 2006) may originate from lightning on Venus.
When the local electric field exceeds the dielectric strength of damp air (about 3 MV/m), electrical discharge results in a strike, often followed by commensurate discharges branching from the same path. Mechanisms that cause the charges to build up to lightning are still a matter of scientific investigation. A 2016 study confirmed dielectric breakdown is involved. Lightning may be caused by the circulation of warm moisture-filled air through .Uman (1986) p. 61. Ice or water particles then accumulate charge as in a Van de Graaff generator.Rakov and Uman, p. 84.
Researchers at the University of Florida found that the final one-dimensional speeds of 10 flashes observed were between 1.0 and 1.4 m/s, with an average of 4.4 m/s.
Lightning discharges generate a wide range of electromagnetic radiations, including radio-frequency pulses. The times at which a pulse from a given lightning discharge arrives at several receivers can be used to locate the source of the discharge with a precision on the order of metres. The United States federal government has constructed a nationwide grid of such lightning detectors, allowing lightning discharges to be tracked in real time throughout the continental U.S. NOAA page on how the U.S. national lightning detection system operates Real-time map of lightning discharges in U.S.
In addition, Blitzortung (a private global detection system that consists of over 500 detection stations owned and operated by hobbyists/volunteers) provides near real-time lightning maps at [14].
The Earth-ionosphere waveguide traps electromagnetic VLF- and ELF waves. Electromagnetic pulses transmitted by lightning strikes propagate within that waveguide. The waveguide is dispersive, which means that their group velocity depends on frequency. The difference of the group time delay of a lightning pulse at adjacent frequencies is proportional to the distance between transmitter and receiver. Together with direction-finding methods, this allows locating lightning strikes up to distances of 10,000 km from their origin. Moreover, the eigenfrequencies of the Earth-ionospheric waveguide, the Schumann resonances
at about 7.5 Hz, are used to determine the global thunderstorm activity.Volland, H. (ed) (1995) Handbook of Atmospheric Electrodynamics, CRC Press, Boca Raton, .
In addition to ground-based lightning detection, several instruments aboard satellites have been constructed to observe lightning distribution. These include the Optical Transient Detector (OTD), aboard the OrbView-1 satellite launched on April 3, 1995, and the subsequent Lightning Imaging Sensor (LIS) aboard TRMM launched on November 28, 1997.
Starting in 2016, the National Oceanic and Atmospheric Administration launched Geostationary Operational Environmental Satellite–R Series (GOES-R) weather satellites outfitted with Geostationary Lightning Mapper (GLM) instruments which are near-infrared optical transient detectors that can detect the momentary changes in an optical scene, indicating the presence of lightning. The lightning detection data can be converted into a real-time map of lightning activity across the Western Hemisphere; this mapping technique has been implemented by the United States National Weather Service.
In 2022 EUMETSAT plan to launch the Lightning Imager (MTG-I LI) on board Meteosat. This will complement NOAA's GLM. MTG-I LI will cover Europe and Africa and will include products on events, groups and flashes.
Lightning-induced magnetic anomalies can be mapped in the ground, Archaeo-Physics, LLC | Lightning-induced magnetic anomalies on archaeological sites . Archaeophysics.com. Retrieved on June 23, 2012. and analysis of magnetized materials can confirm lightning was the source of the magnetization and provide an estimate of the peak current of the lightning discharge.
Research at the University of Innsbruck has calculated that magnetic fields generated by plasma may induce hallucinations in subjects located within of a severe lightning storm, like what happened in Transcranial magnetic stimulation (TMS).
A study from the University of Washington looked at lightning activity in the Arctic from 2010 to 2020. The ratio of Arctic summertime strokes was compared to total global strokes and was observed to be increasing with time, indicating that the region is becoming more influenced by lightning. The fraction of strokes above 65 degrees north was found to be increasing linearly with the NOAA global temperature anomaly and grew by a factor of 3 as the anomaly increased from 0.65 to 0.95 °C
In French and Italian, the expression for "Love at first sight" is coup de foudre and colpo di fulmine, respectively, which literally translated means "lightning strike". Some European languages have a separate word for lightning which strikes the ground (as opposed to lightning in general); often it is a cognate of the English word "rays". The name of Australia's most celebrated thoroughbred horse, Phar Lap, derives from the shared Standard Zhuang and Thai language word for lightning.
Some political parties use lightning flashes as a symbol of power, such as the People's Action Party in Singapore, the British Union of Fascists during the 1930s, and the National States' Rights Party in the United States during the 1950s. Picture of John Kaspar of the National States Rights Party speaking in front of the party’s lightning bolt flag (the flag was red, white, and blue) . Mauryk2.com (November 6, 2010). Retrieved on April 9, 2013. The Schutzstaffel, the paramilitary wing of the Nazi Party, used the Sig rune in their logo which symbolizes lightning. The German word Blitzkrieg, which means "lightning war", was a major offensive strategy of the German army during World War II.
The lightning bolt is a common insignia for military communications units throughout the world. A lightning bolt is also the NATO symbol for a signal asset.
The deadliest single indirect lightning strike was the 1994 Dronka lightning strike. 469 people died when lightning struck a set of oil tanks in 1994, causing burning oil to flood a town (1994, Dronka, Egypt).
In the United States an average of 23 people died from lightning per year from 2012 to 2021.
Necessary conditions
Electrical field generation
Flashes and strikes
Lightning leaders
Upward streamers
Attachment
Discharge
Return stroke
Re-strike
Transient currents during flash
Types
Cloud to ground (CG)
(CG) lightning is a lightning discharge between a thundercloud and the ground. It is initiated by a stepped leader moving down from the cloud, which is met by a streamer moving up from the ground.
Positive and negative lightning
Cloud to cloud (CC) and intra-cloud (IC)
Effects
Lightning strike
Effects on objects
Effects on buildings and vehicles
Effects on animals
Other effects
Thunder
Radio
High-energy radiation
Ozone and nitrogen oxides
Volcanic
If the volcanic ash plume rises to freezing temperatures, ice particles form and collide with ash particles to cause electrification. Lightning can be detected in any explosion but the causation of additional electrification from ice particles in ash can lead to a stronger electrical field and a higher rate of detectable lightning. Lightning is also used as a volcano monitoring tool for detecting hazardous eruptions.
Fire lightning
Extraterrestrial
Human-related phenomena
Scientific study
Properties
Detection and monitoring
Artificially triggered
Physical manifestations
Magnetism
Solar wind and cosmic rays
Lightning and climate change
Paleolightning
In culture and religion
Religion and mythology
In popular culture
Political and military culture
Data of injuries and deaths
See also
Citations
Sources
Further reading
External links
|
|