A glacier (; or ) is a persistent body of dense ice, a form of rock, that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as and , as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as , , or
Accessed 25 Jan. 2025.
On Earth, 99% of glacial ice is contained within vast (also known as "continental glaciers") in the , but glaciers may be found in on every continent other than the Australian mainland, including Oceania's high-latitude oceanic island countries such as New Zealand. Between latitudes 35°N and 35°S, glaciers occur only in the Himalayas, Andes, and a few high mountains in East Africa, Mexico, New Guinea and on Zard-Kuh in Iran.
Glacial ice is the largest reservoir of fresh water on Earth, holding with ice sheets about 69 percent of the world's freshwater. Many glaciers from temperate, Alpine climate and seasonal store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause the glacier to melt, creating a Water resources that is especially important for plants, animals and human uses when other sources may be scant. However, within high-altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater.
Since glacial mass is affected by long-term climatic changes, e.g., precipitation, temperature, and cloud cover, glacial mass changes are considered among the most sensitive indicators of climate change and are a major source of variations in sea level.
A large piece of compressed ice, or a glacier, appears blue, as large quantities of water appear blue, because water molecules absorb other colors more efficiently than blue. The other reason for the blue color of glaciers is the lack of air bubbles. Air bubbles, which give a white color to ice, are squeezed out by pressure increasing the created ice's density.
Glacial bodies larger than are called or continental glaciers. Several kilometers deep, they obscure the underlying topography. Only protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of freshwater, enough that if both melted, global sea levels would rise by over . Portions of an ice sheet or cap that extend into water are called ice shelves; they tend to be thin with limited slopes and reduced velocities. Narrow, fast-moving sections of an ice sheet are called ice streams. In Antarctica, many ice streams drain into large ice shelf. Some drain directly into the sea, often with an ice tongue, like Mertz Glacier.
Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin Island, Devon Island, and in Canada, Southeast Alaska, and the Northern and Southern Patagonian Ice Fields. As the ice reaches the sea, pieces break off or calve, forming . Most tidewater glaciers calve above sea level, which often results in a tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by climate change than other glaciers.
In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice or névé. Under the pressure of the layers of ice and snow above it, this granular snow fuses into denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly more dense than ice formed from frozen water because glacier ice contains fewer trapped air bubbles.
Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of the infrared OH stretching mode of the water molecule. (Liquid water appears blue for the same reason. The blue of glacier ice is sometimes misattributed to Rayleigh scattering of bubbles in the ice.)
Glaciers are broken into zones based on surface snowpack and melt conditions.Benson, C.S., 1961, "Stratigraphic studies in the snow and firn of the Greenland Ice Sheet", Res. Rep. 70, U.S. Army Snow, Ice and Permafrost Res Establ., Corps of Eng., 120 pp. The ablation zone is the region where there is a net loss in glacier mass. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone. The equilibrium line separates the ablation zone and the accumulation zone; it is the contour where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. In general, the accumulation zone accounts for 60–70% of the glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as .
The accumulation zone can be subdivided based on its melt conditions.
The health of a glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area is snow-covered at the end of the melt season, and they have a terminus with a vigorous flow.
Following the Little Ice Age's end around 1850, glaciers around the Earth have retreated substantially. A slight cooling led to the advance of many alpine glaciers between 1950 and 1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous.
where:
The lowest velocities are near the base of the glacier and along valley sides where friction acts against flow, causing the most deformation. Velocity increases inward toward the center line and upward, as the amount of deformation decreases. The highest flow velocities are found at the surface, representing the sum of the velocities of all the layers below.
Because ice can flow faster where it is thicker, the rate of glacier-induced erosion is directly proportional to the thickness of overlying ice. Consequently, pre-glacial low hollows will be deepened and pre-existing topography will be amplified by glacial action, while , which protrude above ice sheets, barely erode at all – erosion has been estimated as 5 m per 1.2 million years. Non-technical summary: This explains, for example, the deep profile of , which can reach a kilometer in depth as ice is topographically steered into them. The extension of fjords inland increases the rate of ice sheet thinning since they are the principal conduits for draining ice sheets. It also makes the ice sheets more sensitive to changes in climate and the ocean.
Although evidence in favor of glacial flow was known by the early 19th century, other theories of glacial motion were advanced, such as the idea that meltwater, refreezing inside glaciers, caused the glacier to dilate and extend its length. As it became clear that glaciers behaved to some degree as if the ice were a viscous fluid, it was argued that "regelation", or the melting and refreezing of ice at a temperature lowered by the pressure on the ice inside the glacier, was what allowed the ice to deform and flow. James Forbes came up with the essentially correct explanation in the 1840s, although it was several decades before it was fully accepted.
Below the equilibrium line, glacial meltwater is concentrated in stream channels. Meltwater can pool in proglacial lakes on top of a glacier or descend into the depths of a glacier via moulins. Streams within or beneath a glacier flow in englacial or sub-glacial tunnels. These tunnels sometimes reemerge at the glacier's surface.
Porosity may vary through a range of methods.
Bed softness may vary in space or time, and changes dramatically from glacier to glacier. An important factor is the underlying geology; glacial speeds tend to differ more when they change bedrock than when the gradient changes. Further, bed roughness can also act to slow glacial motion. The roughness of the bed is a measure of how many boulders and obstacles protrude into the overlying ice. Ice flows around these obstacles by melting under the high pressure on their stoss side; the resultant meltwater is then forced into the cavity arising in their lee side, where it re-freezes.
As well as affecting the sediment stress, fluid pressure (pw) can affect the friction between the glacier and the bed. High fluid pressure provides a buoyancy force upwards on the glacier, reducing the friction at its base. The fluid pressure is compared to the ice overburden pressure, pi, given by ρgh. Under fast-flowing ice streams, these two pressures will be approximately equal, with an effective pressure (pi – pw) of 30 kPa; i.e. all of the weight of the ice is supported by the underlying water, and the glacier is afloat.
The presence of basal meltwater depends on both bed temperature and other factors. For instance, the melting point of water decreases under pressure, meaning that water melts at a lower temperature under thicker glaciers. This acts as a "double whammy", because thicker glaciers have a lower heat conductance, meaning that the basal temperature is also likely to be higher. Bed temperature tends to vary in a cyclic fashion. A cool bed has a high strength, reducing the speed of the glacier. This increases the rate of accumulation, since newly fallen snow is not transported away. Consequently, the glacier thickens, with three consequences: firstly, the bed is better insulated, allowing greater retention of geothermal heat.
Secondly, the increased pressure can facilitate melting. Most importantly, τD is increased. These factors will combine to accelerate the glacier. As friction increases with the square of velocity, faster motion will greatly increase frictional heating, with ensuing melting – which causes a positive feedback, increasing ice speed to a faster flow rate still: west Antarctic glaciers are known to reach velocities of up to a kilometer per year. Eventually, the ice will be surging fast enough that it begins to thin, as accumulation cannot keep up with the transport. This thinning will increase the conductive heat loss, slowing the glacier and causing freezing. This freezing will slow the glacier further, often until it is stationary, whence the cycle can begin again. The flow of water under the glacial surface can have a large effect on the motion of the glacier itself. Subglacial lakes contain significant amounts of water, which can move fast: cubic kilometers can be transported between lakes over the course of a couple of years. This motion is thought to occur in two main modes: pipe flow involves liquid water moving through pipe-like conduits, like a sub-glacial river; sheet flow involves motion of water in a thin layer. A switch between the two flow conditions may be associated with surging behavior. Indeed, the loss of sub-glacial water supply has been linked with the shut-down of ice movement in the Kamb ice stream. The subglacial motion of water is expressed in the surface topography of ice sheets, which slump down into vacated subglacial lakes.
Mean glacial speed varies greatly but is typically around per day. There may be no motion in stagnant areas; for example, in parts of Alaska, trees can establish themselves on surface sediment deposits. In other cases, glaciers can move as fast as per day, such as in Greenland's Jacobshavn Isbræ. Glacial speed is affected by factors such as slope, ice thickness, snowfall, longitudinal confinement, basal temperature, meltwater production, and bed hardness.
A few glaciers have periods of very rapid advancement called surges. These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous movement state. T. Strozzi et al.: The Evolution of a Glacier Surge Observed with the ERS Satellites (pdf, 1.3 Mb) These surges may be caused by the failure of the underlying bedrock, the pooling of meltwater at the base of the glacier — perhaps delivered from a supraglacial lake — or the simple accumulation of mass beyond a critical "tipping point".Meier & Post (1969) Temporary rates up to per day have occurred when increased temperature or overlying pressure caused bottom ice to melt and water to accumulate beneath a glacier.
In glaciated areas where the glacier moves faster than one km per year, glacial earthquakes occur. These are large scale earthquakes that have seismic magnitudes as high as 6.1. "Seasonality and Increasing Frequency of Greenland Glacial Earthquakes" , Ekström, G., M. Nettles, and V.C. Tsai (2006) Science, 311, 5768, 1756–1758, "Analysis of Glacial Earthquakes" Tsai, V. C. and G. Ekström (2007). J. Geophys. Res., 112, F03S22, The number of glacial earthquakes in Greenland peaks every year in July, August, and September and increased rapidly in the 1990s and 2000s. In a study using data from January 1993 through October 2005, more events were detected every year since 2002, and twice as many events were recorded in 2005 as there were in any other year.
The permanent snow cover necessary for glacier formation is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. Glaciers can be found in all except from 20° to 27° north and south of the equator where the presence of the descending limb of the Hadley circulation lowers precipitation so much that with high insolation reach above . Between 19˚N and 19˚S, however, precipitation is higher, and the mountains above usually have permanent snow. Even at high latitudes, glacier formation is not inevitable. Areas of the Arctic, such as Banks Island, and the McMurdo Dry Valleys in Antarctica are considered where glaciers cannot form because they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of the Quaternary, Manchuria, lowland Siberia, and Alaska Interior and northern Alaska, though extraordinarily cold, had such light snowfall that glaciers could not form.
In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high () and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This is because these peaks are located near or in the hyperarid Atacama Desert.
As glaciers flow over bedrock, they soften and lift blocks of rock into the ice. This process, called plucking, is caused by subglacial water that penetrates fractures in the bedrock and subsequently freezes and expands. This expansion causes the ice to act as a lever that loosens the rock by lifting it. Thus, sediments of all sizes become part of the glacier's load. If a retreating glacier gains enough debris, it may become a rock glacier, like the Timpanogos Glacier in Utah.
Abrasion occurs when the ice and its load of rock fragments slide over bedrock and function as sandpaper, smoothing and polishing the bedrock below. The pulverized rock this process produces is called rock flour and is made up of rock grains between 0.002 and 0.00625 mm in size. Abrasion leads to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides, which add even more material to the glacier. Glacial abrasion is commonly characterized by glacial striations. Glaciers produce these when they contain large boulders that carve long scratches in the bedrock. By mapping the direction of the striations, researchers can determine the direction of the glacier's movement. Similar to striations are , lines of crescent-shape depressions in the rock underlying a glacier. They are formed by abrasion when boulders in the glacier are repeatedly caught and released as they are dragged along the bedrock., Åland]]The rate of glacier erosion varies. Six factors control erosion rate:
Material that becomes incorporated in a glacier is typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types:
Larger pieces of rock that are encrusted in till or deposited on the surface are called "". They range in size from pebbles to boulders, but as they are often moved great distances, they may be drastically different from the material upon which they are found. Patterns of glacial erratics hint at past glacial motions.
Typically glaciers deepen their valleys more than their smaller tributary. Therefore, when glaciers recede, the valleys of the tributary glaciers remain above the main glacier's depression and are called .
At the start of a classic valley glacier is a bowl-shaped cirque, which have escarped walls on three sides but is open on the side that descends into the valley called the "lip". Cirques are where ice begins to accumulate in a glacier. Two glacial cirques may form back to back and erode their backwalls until only a narrow ridge, called an arête is left. This structure may result in a mountain pass. If multiple cirques encircle a single mountain, they create pointed ; particularly steep examples are called Glacial horn.
Human activities in the industrial era have increased the concentration of carbon dioxide and other heat-trapping in the air, causing current Climate change. Human influence is the principal driver of changes to the cryosphere of which glaciers are a part.
Global warming creates positive feedback loops with glaciers. For example, in ice–albedo feedback, rising temperatures increase glacier melt, exposing more of earth's land and sea surface (which is darker than glacier ice), allowing sunlight to warm the surface rather than being reflected back into space. Source mentions ice-albedo and melt-elevation feedbacks. Reference glaciers tracked by the World Glacier Monitoring Service have lost ice every year since 1988. See chart on Wikimedia. A study that investigated the period 1995 to 2022 showed that the flow velocity of glaciers in the Alps accelerates and slows down to a similar extent at the same time, despite large distances. This clearly shows that their speed is controlled by the climate change.
Water runoff from melting glaciers causes global sea level to rise, a phenomenon the IPCC terms a "slow onset" event. Impacts at least partially attributable to sea level rise include for example encroachment on coastal settlements and infrastructure, existential threats to small islands and low-lying coasts, losses of coastal ecosystems and ecosystem services, groundwater salinization, and compounding damage from tropical cyclones, flooding, storm surges, and land subsidence.
Recognising the importance of the role of climate change in glacier melt, in 2025 the United Nations declared the International Year of Glaciers' Preservation.
A geomorphological feature created by the same process on a smaller scale is known as dilation-faulting. It occurs where previously compressed rock is allowed to return to its original shape more rapidly than can be maintained without faulting. This leads to an effect similar to what would be seen if the rock were hit by a large hammer. Dilation faulting can be observed in recently de-glaciated parts of Iceland and Cumbria.
In 2015, as New Horizons flew by the Pluto–Charon system, the spacecraft discovered a massive basin—named Sputnik Planitia—covered in a layer of nitrogen ice on Pluto. A large portion of the basin's surface is divided into irregular polygonal features separated by narrow troughs, interpreted as convection cells fueled by internal heat from Pluto's interior. Glacial flows on Pluto were also observed near Sputnik Planitia's margins, appearing to flow both into and out of the basin.
|
|