Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
Gauge pressure (also spelled gage pressure)The preferred spelling varies by country and even by industry. Further, both spellings are often used within a particular industry or country. Industries in British Englishspeaking countries typically use the "gauge" spelling. is the pressure relative to the ambient pressure.Various units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre (N/m^{2}); similarly, the poundforce per square inch (psi) is the traditional unit of pressure in the imperial units and U.S. customary systems. Pressure may also be expressed in terms of standard atmospheric pressure; the atmosphere (atm) is equal to this pressure, and the torr is defined as of this. Manometric units such as the centimetre of water, millimetre of mercury, and inch of mercury are used to express pressures in terms of the height of column of a particular fluid in a manometer.
Pressure is a scalar quantity. It relates the vector area element (a vector normal to the surface) with the normal force acting on it. The pressure is the scalar proportionality constant that relates the two normal vectors:
The minus sign comes from the fact that the force is considered towards the surface element, while the normal vector points outward. The equation has meaning in that, for any surface S in contact with the fluid, the total force exerted by the fluid on that surface is the surface integral over S of the righthand side of the above equation.
It is incorrect (although rather usual) to say "the pressure is directed in such or such direction". The pressure, as a scalar, has no direction. The force given by the previous relationship to the quantity has a direction, but the pressure does not. If we change the orientation of the surface element, the direction of the normal force changes accordingly, but the pressure remains the same.
Pressure is distributed to solid boundaries or across arbitrary sections of fluid normal to these boundaries or sections at every point. It is a fundamental parameter in thermodynamics, and it is conjugate to volume.
Other units of pressure, such as pounds per square inch (Ibf/in^{2}) and bar, are also in common use. The CGS unit of pressure is the barye (Ba), equal to 1 dyn·cm^{−2}, or 0.1 Pa. Pressure is sometimes expressed in gramsforce or kilogramsforce per square centimetre (g/cm^{2} or kg/cm^{2}) and the like without properly identifying the force units. But using the names kilogram, gram, kilogramforce, or gramforce (or their symbols) as units of force is expressly forbidden in SI. The technical atmosphere (symbol: at) is 1 kgf/cm^{2} (98.0665 kPa, or 14.223 psi).
Since a system under pressure has the potential to perform work on its surroundings, pressure is a measure of potential energy stored per unit volume. It is therefore related to energy density and may be expressed in units such as per cubic metre (J/m^{3}, which is equal to Pa). Mathematically:
Some prefer the hectopascal (hPa) for atmospheric air pressure, which is equivalent to the older unit millibar (mbar). Similar pressures are given in kilopascals (kPa) in most other fields, where the hecto prefix is rarely used. The inch of mercury is still used in the United States. Oceanographers usually measure underwater pressure in (dbar) because pressure in the ocean increases by approximately one decibar per metre depth.
The standard atmosphere (atm) is an established constant. It is approximately equal to typical air pressure at Earth mean sea level and is defined as .
Because pressure is commonly measured by its ability to displace a column of liquid in a manometer, pressures are often expressed as a depth of a particular fluid (e.g., centimetres of water, millimetres of mercury or inches of mercury). The most common choices are mercury (Hg) and water; water is nontoxic and readily available, while mercury's high density allows a shorter column (and so a smaller manometer) to be used to measure a given pressure. The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation , where g is the gravitational acceleration. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely. When millimetres of mercury or inches of mercury are quoted today, these units are not based on a physical column of mercury; rather, they have been given precise definitions that can be expressed in terms of SI units. One millimetre of mercury is approximately equal to one torr. The waterbased units still depend on the density of water, a measured, rather than defined, quantity. These manometric units are still encountered in many fields. Blood pressure is measured in millimetres of mercury in most of the world, and lung pressures in centimetres of water are still common.
Underwater divers use the metre sea water (msw or MSW) and foot sea water (fsw or FSW) units of pressure, and these are the standard units for pressure gauges used to measure pressure exposure in and Dive computer. A msw is defined as 0.1 bar (= 100000 Pa = 10000 Pa), is not the same as a linear metre of depth. 33.066 fsw = 1 atm (1 atm = 101325 Pa / 33.066 = 3064.326 Pa). Note that the pressure conversion from msw to fsw is different from the length conversion: 10 msw = 32.6336 fsw, while 10 m = 32.8083 ft.
Gauge pressure is often given in units with "g" appended, e.g. "kPag", "barg" or "psig", and units for measurements of absolute pressure are sometimes given a suffix of "a", to avoid confusion, for example "kPaa", "psia". However, the US National Institute of Standards and Technology recommends that, to avoid confusion, any modifiers be instead applied to the quantity being measured rather than the unit of measure. For example, rather than .
Differential pressure is expressed in units with "d" appended; this type of measurement is useful when considering sealing performance or whether a valve will open or close.
Presently or formerly popular pressure units include the following:
Another example is a knife. If we try to cut with the flat edge, force is distributed over a larger surface area resulting in less pressure, and it will not cut. Whereas using the sharp edge, which has less surface area, results in greater pressure, and so the knife cuts smoothly. This is one example of a practical application of pressure.
For gases, pressure is sometimes measured not as an absolute pressure, but relative to atmospheric pressure; such measurements are called gauge pressure. An example of this is the air pressure in an automobile tire, which might be said to be "", but is actually 220 kPa (32 psi) above atmospheric pressure. Since atmospheric pressure at sea level is about 100 kPa (14.7 psi), the absolute pressure in the tire is therefore about . In technical work, this is written "a gauge pressure of ". Where space is limited, such as on pressure gauges, , graph labels, and table headings, the use of a modifier in parentheses, such as "kPa (gauge)" or "kPa (absolute)", is permitted. In nonSI technical work, a gauge pressure of is sometimes written as "32 psig", and an absolute pressure as "32 psia", though the other methods explained above that avoid attaching characters to the unit of pressure are preferred.
Gauge pressure is the relevant measure of pressure wherever one is interested in the stress on Pressure vessel and the plumbing components of fluidics systems. However, whenever equationofstate properties, such as densities or changes in densities, must be calculated, pressures must be expressed in terms of their absolute values. For instance, if the atmospheric pressure is , a gas (such as helium) at (gauge) ( absolute) is 50% denser than the same gas at (gauge) ( absolute). Focusing on gauge values, one might erroneously conclude the first sample had twice the density of the second one.
A closely related quantity is the stress tensor σ, which relates the vector force $\backslash mathbf\{F\}$ to the vector area $\backslash mathbf\{A\}$ via the linear relation $\backslash mathbf\{F\}\; =\; \backslash sigma\backslash mathbf\{A\}$.
This tensor may be expressed as the sum of the viscous stress tensor minus the hydrostatic pressure. The negative of the stress tensor is sometimes called the pressure tensor, but in the following, the term "pressure" will refer only to the scalar pressure.
According to the theory of general relativity, pressure increases the strength of a gravitational field (see stress–energy tensor) and so adds to the massenergy cause of gravity. This effect is unnoticeable at everyday pressures but is significant in , although it has not been experimentally tested.
Pressure in open conditions usually can be approximated as the pressure in "static" or nonmoving conditions (even in the ocean where there are waves and currents), because the motions create only negligible changes in the pressure. Such conditions conform with principles of fluid statics. The pressure at any given point of a nonmoving (static) fluid is called the hydrostatic pressure.
Closed bodies of fluid are either "static", when the fluid is not moving, or "dynamic", when the fluid can move as in either a pipe or by compressing an air gap in a closed container. The pressure in closed conditions conforms with the principles of fluid dynamics.
The concepts of fluid pressure are predominantly attributed to the discoveries of Blaise Pascal and Daniel Bernoulli. Bernoulli's equation can be used in almost any situation to determine the pressure at any point in a fluid. The equation makes some assumptions about the fluid, such as the fluid being ideal
where:
where
The pressure of a moving fluid can be measured using a Pitot tube, or one of its variations such as a Kiel probe or Cobra probe, connected to a manometer. Depending on where the inlet holes are located on the probe, it can measure static pressures or stagnation pressures.
Surface pressure is denoted by π:
Surface tension is another example of surface pressure, but with a reversed sign, because "tension" is the opposite to "pressure".
where:
exhibit a more complex dependence on the variables of state.P. Atkins, J. de Paula Elements of Physical Chemistry, 4th Ed, W. H. Freeman, 2006. .
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and lift the liquid to form vapour bubbles inside the bulk of the substance. liquid bubble formation deeper in the liquid requires a higher pressure, and therefore higher temperature, because the fluid pressure increases above the atmospheric pressure as the depth increases.
The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called partial pressure.
Liquid pressure also depends on the density of the liquid. If someone was submerged in a liquid more dense than water, the pressure would be correspondingly greater. Thus, we can say that the depth, density and liquid pressure are directly proportionate. The pressure due to a liquid in liquid columns of constant density or at a depth within a substance is represented by the following formula:
where:
Another way of saying the same formula is the following:
This is derived from the definitions of pressure and weight density. Consider an area at the bottom of a vessel of liquid. The weight of the column of liquid directly above this area produces pressure. From the definition
we can express this weight of liquid as
where the volume of the column is simply the area multiplied by the depth. Then we have
With the "area" in the numerator and the "area" in the denominator canceling each other out, we are left with
Written with symbols, this is our original equation:

The pressure a liquid exerts against the sides and bottom of a container depends on the density and the depth of the liquid. If atmospheric pressure is neglected, liquid pressure against the bottom is twice as great at twice the depth; at three times the depth, the liquid pressure is threefold; etc. Or, if the liquid is two or three times as dense, the liquid pressure is correspondingly two or three times as great for any given depth. Liquids are practically incompressible – that is, their volume can hardly be changed by pressure (water volume decreases by only 50 millionths of its original volume for each atmospheric increase in pressure). Thus, except for small changes produced by temperature, the density of a particular liquid is practically the same at all depths.
Atmospheric pressure pressing on the surface of a liquid must be taken into account when trying to discover the total pressure acting on a liquid. The total pressure of a liquid, then, is ρgh plus the pressure of the atmosphere. When this distinction is important, the term total pressure is used. Otherwise, discussions of liquid pressure refer to pressure without regard to the normally everpresent atmospheric pressure.
The pressure does not depend on the amount of liquid present. Volume is not the important factor – depth is. The average water pressure acting against a dam depends on the average depth of the water and not on the volume of water held back. For example, a wide but shallow lake with a depth of exerts only half the average pressure that a small deep pond does. (The total force applied to the longer dam will be greater, due to the greater total surface area for the pressure to act upon. But for a given wide section of each dam, the deep water will apply one quarter the force of deep water). A person will feel the same pressure whether his/her head is dunked a metre beneath the surface of the water in a small pool or to the same depth in the middle of a large lake. If four vases contain different amounts of water but are all filled to equal depths, then a fish with its head dunked a few centimetres under the surface will be acted on by water pressure that is the same in any of the vases. If the fish swims a few centimetres deeper, the pressure on the fish will increase with depth and be the same no matter which vase the fish is in. If the fish swims to the bottom, the pressure will be greater, but it makes no difference what vase it is in. All vases are filled to equal depths, so the water pressure is the same at the bottom of each vase, regardless of its shape or volume. If water pressure at the bottom of a vase were greater than water pressure at the bottom of a neighboring vase, the greater pressure would force water sideways and then up the narrower vase to a higher level until the pressures at the bottom were equalized. Pressure is depth dependent, not volume dependent, so there is a reason that water seeks its own level.
Restating this as energy equation, the energy per unit volume in an ideal, incompressible liquid is constant throughout its vessel. At the surface, gravitational potential energy is large but liquid pressure energy is low. At the bottom of the vessel, all the gravitational potential energy is converted to pressure energy. The sum of pressure energy and gravitational potential energy per unit volume is constant throughout the volume of the fluid and the two energy components change linearly with the depth.Streeter, V. L., Fluid Mechanics, Example 3.5, McGraw–Hill Inc. (1966), New York. Mathematically, it is described by Bernoulli's equation, where velocity head is zero and comparisons per unit volume in the vessel are
Terms have the same meaning as in section Fluid pressure.
When a liquid presses against a surface, there is a net force that is perpendicular to the surface. Although pressure doesn't have a specific direction, force does. A submerged triangular block has water forced against each point from many directions, but components of the force that are not perpendicular to the surface cancel each other out, leaving only a net perpendicular point. This is why water spurting from a hole in a bucket initially exits the bucket in a direction at right angles to the surface of the bucket in which the hole is located. Then it curves downward due to gravity. If there are three holes in a bucket (top, bottom, and middle), then the force vectors perpendicular to the inner container surface will increase with increasing depth – that is, a greater pressure at the bottom makes it so that the bottom hole will shoot water out the farthest. The force exerted by a fluid on a smooth surface is always at right angles to the surface. The speed of liquid out of the hole is $\backslash scriptstyle\; \backslash sqrt\{2gh\}$, where h is the depth below the free surface. This is the same speed the water (or anything else) would have if freely falling the same vertical distance h.

