Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and about the universe. Modern science is typically divided into twoor threemajor branches: the , which study the physical world, and the social sciences, which study individuals and societies. While referred to as the , the study of logic, mathematics, and theoretical computer science are typically regarded as separate because they rely on deductive reasoning instead of the scientific method as their main methodology.
The history of science spans the majority of the historical record, with the earliest identifiable predecessors to modern science dating to the Bronze Age in Ancient Egypt and Mesopotamia (). Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity and later medieval scholarship, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes; while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India and Islamic Golden Age. Building Bridges Among the BRICs , p. 125, Robert Crane, Springer, 2014 The recovery and assimilation of Greek works and Islamic inquiries into Western Europe during the Renaissance revived natural philosophy,Sease, Virginia; Schmidt-Brabant, Manfrid. Thinkers, Saints, Heretics: Spiritual Paths of the Middle Ages. 2007. Pages 80–81 . Retrieved 6 October 2023 which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in the acquisition of knowledge, and in the 19th century, many of the institutional and professional features of science began to take shape,
New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems. Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions, government agencies, and companies. The practical impact of their work has led to the emergence of Science policy that seek to influence the scientific enterprise by prioritising the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection.
There are many hypotheses for sciences ultimate word origin. According to Michiel de Vaan, Dutch linguist and Indo-Europeanist, sciō may have its origin in the Proto-Italic language as *skije- or *skijo- meaning "to know", which may originate from Proto-Indo-European language as skh1-ie, skh1-io meaning "to incise". The Lexikon der indogermanischen Verben proposed sciō is a back-formation of nescīre]], meaning "to not know, be unfamiliar with", which may derive from Proto-Indo-European sekH-]] in Latin secāre]], or skh2- from sḱʰeh2(i)-meaning "to cut".
In the past, science was a synonym for "knowledge" or "study", in keeping with its Latin origin. A person who conducted scientific research was called a "natural philosopher" or "man of science". In 1834, William Whewell introduced the term scientist in a review of Mary Somerville's book On the Connexion of the Physical Sciences, crediting it to "some ingenious gentleman" (possibly himself).
Direct evidence for scientific processes becomes clearer with the advent of writing systems in the Bronze Age civilisations of Ancient Egypt and Mesopotamia (), creating the earliest written records in the history of science. Although the words and concepts of "science" and "nature" were not part of the conceptual landscape at the time, the ancient Egyptians and Mesopotamians made contributions that would later find a place in Greek and medieval science: mathematics, astronomy, and medicine.
The ancient used knowledge about the properties of various natural chemicals for manufacturing pottery, faience, glass, soap, metals, lime plaster, and waterproofing. They studied animal physiology, anatomy, animal behavior, and astrology for divinatory purposes. The Mesopotamians had an intense interest in medicine and the earliest medical prescriptions appeared in Sumerian during the Third Dynasty of Ur. They seem to have studied scientific subjects which had practical or religious applications and had little interest in satisfying curiosity.
The early Greek philosophers of the Milesian school, which was founded by Thales of Miletus and later continued by his successors Anaximander and Anaximenes, were the first to attempt to explain natural phenomena without relying on the supernatural. The Pythagoreans developed a complex number philosophy and contributed significantly to the development of mathematical science. The atomism was developed by the Greek philosopher Leucippus and his student Democritus. Later, Epicurus would develop a full natural cosmology based on atomism, and would adopt a "canon" (ruler, standard) which established physical criteria or standards of scientific truth.Lucretius (1st cenruty BCE) De rerum natura The Greek doctor Hippocrates established the tradition of systematic medical science and is known as "The Father of Medicine".
A turning point in the history of early philosophical science was Socrates' example of applying philosophy to the study of human matters, including human nature, the nature of political communities, and human knowledge itself. The Socratic method as documented by Plato's dialogues is a dialectic method of hypothesis elimination: better hypotheses are found by steadily identifying and eliminating those that lead to contradictions. The Socratic method searches for general commonly held truths that shape beliefs and scrutinises them for consistency. Socrates criticised the older type of study of physics as too purely speculative and lacking in self-criticism.
In the 4th century BCE, Aristotle created a systematic programme of teleological philosophy. In the 3rd century BCE, Greek astronomer Aristarchus of Samos was the first to propose a heliocentric model of the universe, with the Sun at the centre and all the planets orbiting it. Aristarchus's model was widely rejected because it was believed to violate the laws of physics, while Ptolemy's Almagest, which contains a geocentric description of the Solar System, was accepted through the early Renaissance instead. The inventor and mathematician Archimedes of Syracuse made major contributions to the beginnings of calculus. Pliny the Elder was a Roman writer and polymath, who wrote the seminal encyclopaedia Natural History.
Positional notation for representing numbers likely emerged between the 3rd and 5th centuries CE along Indian trade routes. This numeral system made efficient arithmetic operations more accessible and would eventually become standard for mathematics worldwide.
During late antiquity and the Early Middle Ages, natural phenomena were mainly examined via the Aristotelian approach. The approach includes Aristotle's four causes: material, formal, moving, and final cause. Many Greek classical texts were preserved by the Byzantine Empire and Arabic translations were made by Christians, mainly Nestorian schism and Miaphysites. Under the Abbasids, these Arabic translations were later improved and developed by Arabic scientists. By the 6th and 7th centuries, the neighbouring Sasanian Empire established the medical Academy of Gondishapur, which was considered by Greek, Syriac, and Persian physicians as the most important medical hub of the ancient world.
Islamic study of Aristotelianism flourished in the House of Wisdom established in the Abbasid capital of Baghdad, Iraq and the flourished
By the 11th century most of Europe had become Christian, and in 1088, the University of Bologna emerged as the first university in Europe. As such, demand for Latin translation of ancient and scientific texts grew, a major contributor to the Renaissance of the 12th century. Renaissance scholasticism in western Europe flourished, with experiments done by observing, describing, and classifying subjects in nature. In the 13th century, medical teachers and students at Bologna began opening human bodies, leading to the first anatomy textbook based on human dissection by Mondino de Luzzi.
In the 16th century, Nicolaus Copernicus formulated a heliocentric model of the Solar System, stating that the planets revolve around the Sun, instead of the geocentric model where the planets and the Sun revolve around the Earth. This was based on a theorem that the of the planets are longer as their orbs are farther from the centre of motion, which he found not to agree with Ptolemy's model.
Johannes Kepler and others challenged the notion that the only function of the eye is perception, and shifted the main focus in optics from the eye to the propagation of light.
The printing press was widely used to publish scholarly arguments, including some that disagreed widely with contemporary ideas of nature. Francis Bacon and René Descartes published philosophical arguments in favour of a new type of non-Aristotelian science. Bacon emphasised the importance of experiment over contemplation, questioned the Aristotelian concepts of formal and final cause, promoted the idea that science should study the Physical law and the improvement of all human life. Descartes emphasised individual thought and argued that mathematics rather than geometry should be used to study nature.
During this time the declared purpose and value of science became producing wealth and inventions that would improve human lives, in the materialistic sense of having more food, clothing, and other things. In Novum Organum, "the real and legitimate goal of sciences ", and he discouraged scientists from pursuing intangible philosophical or spiritual ideas, which he believed contributed little to human happiness beyond "the fume of subtle, sublime or pleasing speculation".
Science during the Enlightenment was dominated by scientific societies and academies, which had largely replaced universities as centres of scientific research and development. Societies and academies were the backbones of the maturation of the scientific profession. Another important development was the popular culture of science among an increasingly literate population. Enlightenment philosophers turned to a few of their scientific predecessors – Galileo, Kepler, Robert Boyle, and Newton principally – as the guides to every physical and social field of the day.
The 18th century saw significant advancements in the practice of medicine
During the mid-19th century Charles Darwin and Alfred Russel Wallace independently proposed the theory of evolution by natural selection in 1858, which explained how different plants and animals originated and evolved. Their theory was set out in detail in Darwin's book On the Origin of Species, published in 1859. Separately, Gregor Mendel presented his paper, "Experiments on Plant Hybridisation" in 1865, which outlined the principles of biological inheritance, serving as the basis for modern genetics.
Early in the 19th century John Dalton suggested the modern atomic theory, based on Democritus's original idea of indivisible particles called atoms. The laws of conservation of energy, conservation of momentum and conservation of mass suggested a highly stable universe where there could be little loss of resources. However, with the advent of the steam engine and the Industrial Revolution there was an increased understanding that not all forms of energy have the same energy quality, the ease of conversion to useful work or to another form of energy. This realisation led to the development of the laws of thermodynamics, in which the free energy of the universe is seen as constantly declining: the entropy of a closed universe increases over time.
The electromagnetic theory was established in the 19th century by the works of Hans Christian Ørsted, André-Marie Ampère, Michael Faraday, James Clerk Maxwell, Oliver Heaviside, and Heinrich Hertz. The new theory raised questions that could not easily be answered using Newton's framework. The discovery of inspired the discovery of radioactivity by Henri Becquerel and Marie Curie in 1896, Marie Curie then became the first person to win two Nobel Prizes. In the next year came the discovery of the first subatomic particle, the electron.
During this period scientific experimentation became increasingly Big science. The extensive technological innovation stimulated by World War I, World War II, and the Cold War led to competitions between Great power, such as the Space Race and nuclear arms race. Substantial international collaborations were also made, despite armed conflicts.
In the late 20th century active recruitment of women and elimination of sex discrimination greatly increased the number of women scientists, but large gender disparities remained in some fields. The discovery of the cosmic microwave background in 1964 led to a rejection of the steady-state model of the universe in favour of the Big Bang theory of Georges Lemaître.
The century saw fundamental changes within science disciplines. Evolution became a unified theory in the early 20th century when the modern synthesis reconciled Darwinian evolution with classical genetics.
In the scientific method an explanatory thought experiment or hypothesis is put forward as an explanation using parsimony principles and is expected to seek consilience – fitting with other accepted facts related to an observation or scientific question. This tentative explanation is used to make falsifiable predictions, which are typically posted before being tested by experimentation. Disproof of a prediction is evidence of progress. Experimentation is especially important in science to help establish causal relationships to avoid the correlation fallacy, though in some sciences such as astronomy or geology, a predicted observation might be more appropriate.
When a hypothesis proves unsatisfactory it is modified or discarded. If the hypothesis survives testing, it may become adopted into the framework of a scientific theory, a deductive logic , self-consistent model or framework for describing the behaviour of certain natural events. A theory typically describes the behaviour of much broader sets of observations than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus, a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. Scientists may generate a model, an attempt to describe or depict an observation in terms of a logical, physical or mathematical representation, and to generate new hypotheses that can be tested by experimentation.
While performing experiments to test hypotheses, scientists may have a preference for one outcome over another. Eliminating the bias can be achieved through transparency, careful experimental design, and a thorough peer review process of the experimental results and conclusions. After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.
Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a scientific paper. Science has become so pervasive in modern societies that it is considered necessary to communicate the achievements, news, and ambitions of scientists to a wider population.
An area of study or speculation that masquerades as science in an attempt to claim legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or junk science. Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe, and at a glance, look like they are doing science but lack the honesty to allow their results to be rigorously evaluated. Various types of commercial advertising, ranging from hype to fraud, may fall into these categories. Science has been described as "the most important tool" for separating valid claims from invalid ones.
There can also be an element of political bias or ideological bias on all sides of scientific debates. Sometimes, research may be characterised as "bad science", research that may be well-intended but is incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term scientific misconduct refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.
Empiricism has stood in contrast to rationalism, the position originally associated with Descartes, which holds that knowledge is created by the human intellect, not by observation. Critical rationalism is a contrasting 20th-century approach to science, first defined by Austrian-British philosopher Karl Popper. Popper rejected the way that empiricism describes the connection between theory and observation. He claimed that theories are not generated by observation, but that observation is made in the light of theories, and that the only way theory A can be affected by observation is after theory A were to conflict with observation, but theory B were to survive the observation. Popper proposed replacing verifiability with falsifiability as the landmark of scientific theories, replacing induction with falsification as the empirical method. Popper further claimed that there is actually only one universal method, not specific to science: the negative method of criticism, trial and error, covering all products of the human mind, including science, mathematics, philosophy, and art.
Another approach, instrumentalism, emphasises the utility of theories as instruments for explaining and predicting phenomena. It views scientific theories as black boxes, with only their input (initial conditions) and output (predictions) being relevant. Consequences, theoretical entities, and logical structure are claimed to be things that should be ignored. Close to instrumentalism is constructive empiricism, according to which the main criterion for the success of a scientific theory is whether what it says about observable entities is true.
Thomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent "portrait" of the world that is consistent with observations made from its framing. He characterised normal science as the process of observation and "puzzle solving", which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift. Each paradigm has its own distinct questions, aims, and interpretations. The choice between paradigms involves setting two or more "portraits" against the world and deciding which likeness is most promising. A paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn's position, however, is not one of relativism.
Another approach often cited in debates of scientific scepticism against controversial movements like "creation science" is methodological naturalism. Naturalists maintain that a difference should be made between natural and supernatural, and science should be restricted to natural explanations. Methodological naturalism maintains that science requires strict adherence to empirical study and independent verification.
Science has historically been a male-dominated field, with notable exceptions. Women have faced considerable discrimination in science, much as they have in other areas of male-dominated societies. For example, women were frequently passed over for job opportunities and denied credit for their work. The achievements of women in science have been attributed to the defiance of their traditional role as labourers within the domestic sphere.
The professionalisation of science, begun in the 19th century, was partly enabled by the creation of national distinguished academies of sciences such as the Italian Accademia dei Lincei in 1603, the British Royal Society in 1660, the French Academy of Sciences in 1666, the American National Academy of Sciences in 1863, the German Kaiser Wilhelm Society in 1911, and the Chinese Academy of Sciences in 1949. International scientific organisations, such as the International Science Council, are devoted to international cooperation for science advancement.
Many governments have dedicated agencies to support scientific research, such as the National Science Foundation in the United States, the National Scientific and Technical Research Council in Argentina, Commonwealth Scientific and Industrial Research Organisation in Australia, National Centre for Scientific Research in France, the Max Planck Society in Germany, and National Research Council in Spain. In commercial research and development, all but the most research-orientated corporations focus more heavily on near-term commercialisation possibilities than research driven by curiosity.
Science policy is concerned with policies that affect the conduct of the scientific enterprise, including research funding, often in pursuance of other national policy goals such as technological innovation to promote commercial product development, weapons development, health care, and environmental monitoring. Science policy sometimes refers to the act of applying scientific knowledge and consensus to the development of public policies. In accordance with public policy being concerned about the well-being of its citizens, science policy's goal is to consider how science and technology can best serve the public. Public policy can directly affect the funding of capital equipment and intellectual infrastructure for industrial research by providing tax incentives to those organisations that fund research.
The mass media face pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate may require considerable expertise regarding the matter. Few journalists have real scientific knowledge, and even who are knowledgeable about certain scientific issues may be ignorant about other scientific issues that they are suddenly asked to cover.
Science magazines such as New Scientist, Science & Vie, and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research. The science fiction genre, primarily speculative fiction, can transmit the ideas and methods of science to the general public. Recent efforts to intensify or develop links between science and non-scientific disciplines, such as literature or poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.
|
|