A smartphone is a mobile device that combines mobile phone and mobile computing functions into one unit. They are distinguished from by their stronger hardware capabilities and extensive mobile operating systems, which facilitate wider software, internet (including web browsing" A Survey of Techniques for Improving Efficiency of Mobile Web Browsing", CPE, 2018 over mobile broadband), and multimedia functionality (including music, video, camera phone, and mobile gaming), alongside core phone functions such as telephone call and text messaging. Smartphones typically contain a number of metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, include various that can be leveraged by their software (such as a magnetometer, , barometer, gyroscope, or accelerometer), and support wireless communications protocols (such as Bluetooth, Wi-Fi, or satellite navigation).
Early smartphones were marketed primarily towards the enterprise market, attempting to bridge the functionality of standalone personal digital assistant (PDA) devices with support for cellular telephony, but were limited by their bulky form, short battery life, slow analog cellular networks, and the immaturity of wireless data services. These issues were eventually resolved with the MOSFET scaling and miniaturization of down to sub-micron levels (Moore's law), the improved lithium-ion battery, faster digital Mobile broadband (Edholm's law), and more mature software platforms that allowed mobile device ecosystems to develop independently of data providers.
In the 2000s, NTT DoCoMo's i-mode platform, BlackBerry, Nokia's Symbian platform, and Windows Mobile began to gain market traction, with models often featuring QWERTY keyboards or resistive touchscreen input, and emphasizing access to push email and wireless internet. Following the rising popularity of the iPhone in the late 2000s, the majority of smartphones have featured thin, slate-like form factors, with large, capacitive screens with support for multi-touch gestures rather than physical keyboards, and offer the ability for users to download or purchase additional mobile app from a centralized app store, and use cloud storage and synchronization, virtual assistants, as well as mobile payment services. Smartphones have largely replaced PDAs and handheld PC.
Improved hardware and faster wireless communication (due to standards such as LTE) have bolstered the growth of the smartphone industry. In the third quarter of 2012, one billion smartphones were in use worldwide. Global smartphone sales surpassed the sales figures for feature phones in early 2013.
The IBM Simon was manufactured by Mitsubishi Electric, which integrated features from its own wireless personal digital assistant (PDA) and cellular radio technologies. It featured a liquid-crystal display (LCD) and PC Card support. The Simon was commercially unsuccessful, particularly due to its bulky form factor and limited battery life, using NiCad batteries rather than the nickel–metal hydride batteries commonly used in mobile phones in the 1990s, or lithium-ion batteries used in modern smartphones.
The term "smart phone" was not coined until a year after the introduction of the Simon, appearing in print as early as 1995, describing AT&T's PhoneWriter Communicator. The term "smartphone" was first used by Ericsson in 1997 to describe a new device concept, the GS88.
In March 1996, Hewlett-Packard released the OmniGo 700LX, a modified HP 200LX palmtop PC with a Nokia 2110 mobile phone piggybacked onto it and Read-only memory-based software to support it. It had a 640×200 resolution CGA compatible four-shade gray-scale LCD screen and could be used to place and receive calls, and to create and receive text messages, emails and faxes. It was also 100% DOS 5.0 compatible, allowing it to run thousands of existing software titles, including early versions of Windows.
In August 1996, Nokia released the Nokia 9000 Communicator, a digital cellular PDA based on the Nokia 2110 with an integrated system based on the PEN/GEOS 3.0 operating system from Geoworks. The two components were attached by a hinge in what became known as a clamshell design, with the display above and a physical QWERTY keyboard below. The PDA provided e-mail; calendar, address book, calculator and notebook applications; text-based Web browsing; and could send and receive faxes. When closed, the device could be used as a digital cellular telephone.
In June 1999 Qualcomm released the "pdQ Smartphone", a CDMA digital PCS smartphone with an integrated Palm OS PDA and Internet connectivity.
Subsequent landmark devices included:
The degree of integration between phones and carriers, unique phone features, non-standardized platforms, and tailoring to Japanese culture made it difficult for Japanese manufacturers to export their phones, especially when demand was so high in Japan that the companies didn't feel the need to look elsewhere for additional profits.
The rise of 3G technology in other markets and non-Japanese phones with powerful standardized smartphone operating systems, , and advanced wireless network capabilities allowed non-Japanese phone manufacturers to finally break in to the Japanese market, gradually adopting Japanese phone features like , mobile payments, NFC, etc. and spreading them to the rest of the world.
Outside the U.S. and Japan, Nokia was seeing success with its smartphones based on Symbian, originally developed by Psion for their personal organisers, and it was the most popular smartphone OS in Europe during the middle to late 2000s. Initially, Nokia's Symbian smartphones were focused on business with the Nokia Eseries, similar to Windows Mobile and BlackBerry devices at the time. From 2006 onwards, Nokia started producing consumer-focused smartphones, popularized by the entertainment-focused Nokia Nseries. Until 2010, Symbian was the world's most widely used smartphone operating system.
The touchscreen PDA-derived nature of adapted operating systems like Palm OS, the "Pocket PC" versions of what was later Windows Mobile, and the UIQ interface that was originally designed for pen-based on Symbian OS devices resulted in some early smartphones having stylus-based interfaces. These allowed for virtual keyboards and/or handwriting input, thus also allowing easy entry of Asian characters.
By the mid-2000s, the majority of smartphones had a physical QWERTY keyboard. Most used a "keyboard bar" form factor, like the BlackBerry line, Windows Mobile smartphones, , and some of the Nokia Eseries. A few hid their full physical QWERTY keyboard in a sliding form factor, like the Danger Hiptop line. Some even had only a Telephone keypad using T9 text input, like the Nokia Nseries and other models in the Nokia Eseries. Resistive touchscreens with stylus-based interfaces could still be found on a few smartphones, like the , which had dropped their handwriting input after a few early models that were available in versions with Graffiti instead of a keyboard.
In January 2007, Apple Computer introduced the iPhone. It had a 3.5" capacitive touchscreen with twice the common resolution of most smartphone screens at the time, and introduced multi-touch to phones, which allowed gestures such as "pinching" to zoom in or out on photos, maps, and web pages. The iPhone was notable as being the first device of its kind targeted at the mass market to abandon the use of a stylus, keyboard, or keypad typical of contemporary smartphones, instead using a large touchscreen for direct finger input as its main means of interaction.
The iPhone's operating system was also a shift away from previous ones that were adapted from PDAs and , to one powerful enough to avoid using a limited, Mobile browser requiring pages specially formatted using technologies such as WML, i-mode, or XHTML that previous phones supported and instead run a version of Apple's Safari browser that could easily render full websites not specifically designed for phones.
Later Apple shipped a software update that gave the iPhone a built-in on-device App Store allowing direct wireless downloads of third-party software. This kind of centralized App Store and free developer tools quickly became the new main paradigm for all smartphone platforms for software development, distribution, discovery, installation, and payment, in place of expensive developer tools that required official approval to use and a dependence on third-party sources providing applications for multiple platforms.
The advantages of a design with software powerful enough to support advanced applications and a large capacitive touchscreen affected the development of another smartphone OS platform, Android, with a more BlackBerry-like prototype device scrapped in favor of a touchscreen device with a slide-out physical keyboard, as Google's engineers thought at the time that a touchscreen could not completely replace a physical keyboard and buttons. Android is based around a modified Linux kernel, again providing more power than mobile operating systems adapted from PDAs and feature phones. The first Android device, the horizontal-sliding HTC Dream, was released in September 2008.
Multiple vendors attempted to update or replace their existing smartphone platforms and devices to better-compete with Android and the iPhone; Palm unveiled a new platform known as webOS for its Palm Pre in late-2009 to replace Palm OS, which featured a focus on a task-based "card" metaphor and seamless synchronization and integration between various online services (as opposed to the then-conventional concept of a smartphone needing a PC to serve as a "canonical, authoritative repository" for user data). Hewlett-Packard acquired Palm in 2010 and released several other webOS devices, including the Pre 3 and HP TouchPad tablet. As part of a proposed divestment of its consumer business to focus on enterprise software, HP abruptly ended development of future webOS devices in August 2011, and sold the rights to webOS to LG Electronics in 2013, for use as a smart TV platform.
Research in Motion introduced the vertical-sliding BlackBerry Torch and BlackBerry OS 6 in 2010, which featured a redesigned user interface, support for gestures such as pinch-to-zoom, and a new web browser based on the same WebKit rendering engine used by the iPhone. The following year, RIM released BlackBerry OS 7 and new models in the BlackBerry Bold and Torch ranges, which included a new Bold with a touchscreen alongside its keyboard, and the Torch 9860—the first BlackBerry phone to not include a physical keyboard. In 2013, it replaced the legacy BlackBerry OS with a revamped, QNX-based platform known as BlackBerry 10, with the all-touch BlackBerry Z10 and keyboard-equipped Q10 as launch devices.
In 2010, Microsoft unveiled a replacement for Windows Mobile known as Windows Phone, featuring a new touchscreen-centric user interface built around flat design and typography, a home screen with "live tiles" containing feeds of updates from apps, as well as integrated Microsoft Office apps. In February 2011, Nokia announced that it had entered into a major partnership with Microsoft, under which it would exclusively use Windows Phone on all of its future smartphones, and integrate Microsoft's Bing search engine and Bing Maps (which, as part of the partnership, would also license Nokia Maps data) into all future devices. The announcement led to the abandonment of both Symbian, as well as MeeGo—a Linux-based mobile platform it was co-developing with Intel. Nokia's low-end Lumia 520 saw strong demand and helped Windows Phone gain niche popularity in some markets, overtaking BlackBerry in global market share in 2013.
Many of these attempts to compete with Android and iPhone were short-lived. Over the course of the decade, the two platforms became a clear duopoly in smartphone sales and market share, with BlackBerry, Windows Phone, and "other" operating systems eventually stagnating to little or no measurable market share. In 2015, BlackBerry began to pivot away from its in-house mobile platforms in favor of producing Android devices, focusing on a security-enhanced distribution of the software. The following year, the company announced that it would also exit the hardware market to focus more on software and its enterprise middleware, and began to license the BlackBerry brand and its Android distribution to third-party OEMs such as TCL Corporation for future devices.
In September 2013, Microsoft announced its intent to acquire Nokia's mobile device business for $7.1 billion, as part of a strategy under CEO Steve Ballmer for Microsoft to be a "devices and services" company. Despite the growth of Windows Phone and the Microsoft Lumia range (which accounted for nearly 90% of all Windows Phone devices sold), the platform never had significant market share in the key U.S. market, and Microsoft was unable to maintain Windows Phone's momentum in the years that followed, resulting in dwindling interest from users and app developers. After Balmer was succeeded by Satya Nadella (who has placed a larger focus on software and cloud computing) as CEO of Microsoft, it took a $7.6 billion write-off on the Nokia assets in July 2015, and laid off nearly the entire Microsoft Mobile unit in May 2016.
Prior to the completion of the sale to Microsoft, Nokia released a series of Android-derived smartphones for known as Nokia X, which combined an Android-based platform with elements of Windows Phone and Nokia's feature phone platform Asha, using Microsoft and Nokia services rather than Google.
By the mid-2000s, higher-end cell phones commonly had integrated digital cameras. In 2003 outsold stand-alone digital cameras, and in 2006 they outsold film and digital stand-alone cameras. Five billion camera phones were sold in five years, and by 2007 more than half of the installed base of all mobile phones were camera phones. Sales of separate cameras peaked in 2008.
Many early smartphones didn't have cameras at all, and earlier models that had them had low performance and insufficient image and video quality that could not compete with budget pocket cameras and fulfill user's needs. By the beginning of the 2010s almost all smartphones had an integrated digital camera. The decline in sales of stand-alone cameras accelerated due to the increasing use of smartphones with rapidly improving camera technology for casual photography, easier image manipulation, and abilities to directly Image sharing through the use of Mobile app and web-based services. By 2011, cell phones with integrated cameras were selling hundreds of millions per year. In 2015, digital camera sales were 35.395 million units or only less than a third of digital camera sales numbers at their peak and also slightly less than film camera sold number at their peak.
Contributing to the rise in popularity of smartphones being used over dedicated cameras for photography, smaller pocket cameras have difficulty producing bokeh in images, but nowadays, some smartphones have dual-lens cameras that reproduce the bokeh effect easily, and can even rearrange the level of bokeh after shooting. This works by capturing multiple images with different focus settings, then combining the background of the main image with a macro focus shot.
In 2007 the Nokia N95 was notable as a smartphone that had a 5.0 Megapixel (MP) camera, when most others had cameras with around 3 MP or less than 2 MP. Some specialized feature phones like the LG Viewty, Samsung SGH-G800, and Sony Ericsson K850i, all released later that year, also had 5.0 MP cameras. By 2010 5.0 MP cameras were common; a few smartphones had 8.0 MP cameras and the Nokia N8, Sony Ericsson Satio, and Samsung M8910 Pixon12 feature phone had 12 MP. In 2009 the Samsung Omnia HD was the first phone with 720p video recording. A 14-megapixel smartphone with 3x optical zoom was announced in late 2010. In 2012 Nokia announced the Nokia 808 PureView, featuring a 41-megapixel 1/1.2-inch sensor and a high-resolution f/2.4 Zeiss all-aspherical one-group lens. 1080p video recording on a smartphone was achieved in 2011, and 2160p (4K) video recording in 2013. In 2016 Apple introduced the iPhone 7 Plus, one of the phones to popularize a dual camera setup. The iPhone 7 Plus included a main 12 MP camera along with a 12 MP telephoto camera. In early 2018 Huawei released a new flagship phone, the Huawei P20 Pro, one of the first triple camera lens setups with Leica Camera optics. In late 2018, Samsung released a new mid-range smartphone, the Galaxy A9 (2018) with the world's first quad camera setup. The Nokia 9 PureView was released in 2019 featuring a penta-lens camera system.
2019 saw the commercialization of high resolution sensors, which use Bayer filter to capture more light. 48 MP and 64 MP sensors developed by Sony and Samsung are commonly used by several manufacturers. 108 MP sensors were first implemented in late 2019 and early 2020.
Some companies began to release smartphones in 2013 incorporating to create curved form factors, such as the Samsung Galaxy Round and LG G Flex.
By 2014, 1440p displays began to appear on high-end smartphones. In 2015, Sony released the Xperia Z5 Premium, featuring a 4K resolution display, although only images and videos could actually be rendered at that resolution (all other software was shown at 1080p).
New trends for smartphone displays began to emerge in 2017, with both LG and Samsung releasing flagship smartphones (LG G6 and Galaxy S8), utilizing displays with taller aspect ratios than the common ratio, and a high screen-to-body ratio, also known as a "bezel-less design". These designs allow the display to have a larger diagonal measurement, but with a slimmer width than 16:9 displays with an equivalent screen size.
Another trend popularized in 2017 were displays containing tab-like cut-outs at the top-centre—colloquially known as a "notch"—to contain the front-facing camera, and sometimes other sensors typically located along the top bezel of a device. These designs allow for "edge-to-edge" displays that take up nearly the entire height of the device, with little to no bezel along the top, and sometimes a minimal bottom bezel as well. This design characteristic appeared almost simultaneously on the Sharp Aquos S2 and the Essential Phone, which featured circular tabs for their cameras, followed just a month later by the iPhone X, which used a wider tab to contain a camera and facial scanning system known as Face ID. The 2016 LG V10 had a precursor to the concept, with a portion of the screen wrapped around the camera area in the top-left corner, with the resulting area marketed as a "second" display that could be used for various supplemental features.
Other variations of the practice later emerged, such as a "hole-punch" camera (such as those of the Honor View 20, and Samsung's Galaxy A8s and Galaxy S10)—eschewing the tabbed "notch" for a circular or rounded-rectangular cut-out within the screen instead, while Oppo released the first "all-screen" phones with no notches at all, including one with a mechanical front camera that pops up from the top of the device (Find X), and a 2019 prototype for a front-facing camera that can be embedded and hidden below the display, using a special partially-translucent screen structure that allows light to reach the image sensor below the panel. The first implementation was the ZTE Axon 20 5G, with a 32 MP sensor manufactured by Visionox.
greater than 60 Hz first appeared in 2017 on the Razer Phone and Sharp Aquos R Compact, and were popularized by several brands in 2019. Devices with a high refresh rate have lower motion blur and input lag.
In October 2013, Motorola Mobility announced Project Ara, a concept for a modular smartphone platform that would allow users to customize and upgrade their phones with add-on modules that attached magnetically to a frame. Ara was retained by Google following its sale of Motorola Mobility to Lenovo, but was shelved in 2016. That year, LG and Motorola both unveiled smartphones featuring a limited form of modularity for accessories; the LG G5 allowed accessories to be installed via the removal of its battery compartment, while the Moto Z utilizes accessories attached magnetically to the rear of the device.
As of 2015, the global median for smartphone ownership was 43%. Statista forecast that 2.87 billion people would own smartphones in 2020.
The performance of mobile CPU depends not only on the clock rate (generally given in multiples of hertz) but also on the memory hierarchy. Because of these challenges, the performance of mobile phone CPUs is often more appropriately given by scores derived from various standardized tests to measure the real effective performance in commonly used applications.
Screen sizes are measured in diagonal . Phones with screens larger than 5.2 inches are often called "". Smartphones with screens over 4.5 inches in size are commonly difficult to use with only a single hand, since most thumbs cannot reach the entire screen surface; they may need to be shifted around in the hand, held in one hand and manipulated by the other, or used in place with both hands. Due to design advances, some modern smartphones with large screen sizes and "edge-to-edge" designs have compact builds that improve their ergonomics, while the shift to taller aspect ratios have resulted in phones that have larger screen sizes whilst maintaining the ergonomics associated with smaller 16:9 displays.
Liquid-crystal displays (LCDs) and organic light-emitting diode (OLED) displays are the most common. Some displays are integrated with pressure-sensitive digitizers, such as those developed by Wacom and Samsung, and Apple's Force Touch system. A few phones, such as the YotaPhone prototype, are equipped with a low-power electronic paper rear display, as used in .
Some devices are equipped with additional input methods such as a stylus for higher precision input, and/or a self-capacitive touch screens layer for floating finger detection. The latter was utilized by few phones such as the Samsung Galaxy S4, Note 3, S5, and Sony Xperia Sola for preview (such as on the video player's seek bar, in text messages, and quick contacts on the dial pad), lock screen animation, and the simulation of a mouseover mouse cursor on web sites.
In case of technical defects which make the device unusable or unbootable as a result of liquid damage, fall damage, screen damage, bendgate, malware, or bogus software update, etc., data stored on the memory card is likely data recovery externally, while data on the inaccessible internal storage would be data loss. A memory card can usually immediately be re-used in a different memory-card-enabled device with no necessity for prior .
Some dual-SIM mobile phones are equipped with a hybrid slot, where one of the two slots can be occupied by either a SIM card or a memory card.
However, unlike mass storage, Media Transfer Protocol lacks parallelism, meaning that only a single transfer can run at a time, for which other transfer requests need to wait to finish. In addition, the direct access of files through MTP is not supported. Any file is wholly downloaded from the device before opened.
Some mobile phones such as the HTC One M8 and the Sony Xperia Z2 are equipped with stereophonic speakers to create spacial sound when in horizontal orientation.
The decline of the connector's availability among newly released mobile phones among all major vendors commenced in 2016 with its lack on the Apple iPhone 7. An adapter reserving the charging port can retrofit the plug.
Battery-powered, wireless Bluetooth headphones are an alternative. Those tend to be costlier however due to their need for internal hardware such as a Bluetooth transceiver, and a Bluetooth coupling is required ahead of each operation.
/ref>
Some mobile phones are designed with batteries that can be interchanged upon expiration by the end user, usually by opening the back cover. While such a design had initially been used in most mobile phones, including those with touch screen that were not , it has largely been usurped throughout the 2010s by permanently built-in, non-replaceable batteries; a design practice criticized for planned obsolescence.
While charging rates have been increasing, with 15 in 2014, 20 Watts in 2016, and 45 Watts in 2018, the power throughput may be throttled down significantly during operation of the device.
Wireless charging has been widely adapted, allowing for intermittent recharging without wearing down the charging port through frequent reconnection, with Qi being the most common standard, followed by Powermat. Due to the lower efficiency of wireless power transmission, charging rates are below that of wired charging, and more heat is produced at similar charging rates.
By the end of 2017, smartphone battery life has become generally adequate; however, earlier smartphone battery life was poor due to the weak batteries that could not handle the significant power requirements of the smartphones' computer systems and color screens.
Smartphone users purchase additional chargers for use outside the home, at work, and in cars and by buying portable external "battery packs". External battery packs include generic models which are connected to the smartphone with a cable, and custom-made models that "piggyback" onto a smartphone's case. In 2016, Samsung had to recall millions of the Galaxy Note 7 smartphones due to an explosive battery issue. For consumer convenience, wireless charging stations have been introduced in some hotels, bars, and other public spaces.
Typically smartphones have at least one main rear-facing camera and a lower-resolution front-facing camera for "" and video chat. Owing to the limited depth available in smartphones for and Lens, rear-facing cameras are often housed in a "bump" that's thicker than the rest of the phone. Since increasingly thin mobile phones have more abundant horizontal space than the depth that is necessary and used in dedicated cameras for better lenses, there's additionally a trend for phone manufacturers to include multiple cameras, with each optimized for a different purpose (Telephoto lens, Wide-angle lens, etc.).
Images are usually saved in the JPEG file format; some high-end phones also have RAW image capability.
Modern advanced smartphones have cameras with optical image stabilisation (OIS), larger sensors, bright lenses, and even optical zoom plus RAW images. HDR, "Bokeh mode" with multi lenses and multi-shot night modes are now also familiar. Many new smartphone camera features are being enabled via computational photography image processing and multiple specialized lenses rather than larger sensors and lenses, due to the constrained space available inside phones that are being made as slim as possible.
Cases range from relatively inexpensive rubber or soft plastic cases which provide moderate protection from bumps and good protection from scratches to more expensive, heavy-duty cases that combine a rubber padding with a hard outer shell. Some cases have a "book"-like form, with a cover that the user opens to use the device; when the cover is closed, it protects the screen. Some "book"-like cases have additional pockets for credit cards, thus enabling people to use them as .
Accessories include products sold by the manufacturer of the smartphone and compatible products made by other manufacturers.
Mobile operating systems combine features of a personal computer operating system with other features useful for mobile or handheld use; usually including, and most of the following considered essential in modern mobile systems; a touchscreen, Cellular network, Bluetooth, Wi-Fi Protected Access, Wi-Fi, Global Positioning System (GPS) mobile navigation, video camera and digital camera, speech recognition, voice recorder, music player, near field communication, and infrared blaster. By Q1 2018, over 383 million smartphones were sold with 85.9 percent running Android, 14.1 percent running iOS and a negligible number of smartphones running other OSes. Android alone is more popular than the popular desktop operating system Windows, and in general smartphone use (even without tablets) exceeds desktop use.
Mobile devices with mobile communications abilities (e.g., smartphones) contain two mobile operating systemsthe main user-facing software platform is supplemented by a second low-level proprietary real-time operating system which operates the radio and other hardware. Research has shown that these low-level systems may contain a range of security vulnerabilities permitting malicious to gain high levels of control over the mobile device.Thom Holwerda, OSNews, November 12, 2013, The second operating system hiding in every mobile phone
+ Worldwide smartphones producers market share |
In 2011, Samsung had the highest shipment market share worldwide, followed by Apple. In 2013, Samsung had 31.3% market share, a slight increase from 30.3% in 2012, while Apple was at 15.3%, a decrease from 18.7% in 2012. Huawei, LG and Lenovo were at about 5% each, significantly better than 2012 figures, while others had about 40%, the same as the previous years figure. Only Apple lost market share, although their shipment volume still increased by 12.9%; the rest had significant increases in shipment volumes of 36–92%. In Q1 2014, Samsung had a 31% share and Apple had 16%. In Q4 2014, Apple had a 20.4% share and Samsung had 19.9%. In Q2 2016, Samsung had a 22.3% share and Apple had 12.9%. In Q1 2017, IDC reported that Samsung was first placed, with 80 million units, followed by Apple with 50.8 million, Huawei with 34.6 million, Oppo with 25.5 million and Vivo with 22.7 million.
Samsung's mobile business is half the size of Apple's, by revenue. Apple business increased very rapidly in the years 2013 to 2017. Realme, a brand owned by Oppo, is the fastest-growing phone brand worldwide since Q2 2019. In China, Huawei and Honor, a brand owned by Huawei, have 46% of market share combined and posted 66% annual growth as of 2019, amid growing Chinese nationalism. In 2019, Samsung had a 74% market share in 5G smartphones while 5G smartphones had 1% of market share in China.
Research has shown that iPhones are commonly associated with wealth, and that the average iPhone user has 40% more annual income than the average Android user. Women are more likely than men to own an iPhone. TrendForce predicts that foldable phones will start to become popular in 2021.
Branchless banking has been successful in South Africa and the Philippines. A pilot project in Bali was launched in 2011 by the International Finance Corporation and an bank, Bank Mandiri.
Another application of mobile banking technology is Zidisha, a US-based nonprofit micro-lending platform that allows residents of developing countries to raise small business loans from Web users worldwide. Zidisha uses mobile banking for loan disbursements and repayments, transferring funds from lenders in the United States to borrowers in rural Africa who have mobile phones and can use the Internet.
Mobile payments were first trialled in Finland in 1998 when two Coca-Cola vending machines in Espoo were enabled to work with SMS payments. Eventually, the idea spread and in 1999, the Philippines launched the country's first commercial mobile payments systems with mobile operators Globe Telecom and Smart.
Some mobile phones can make via direct mobile billing schemes, or through contactless payments if the phone and the point of sale support near field communication (NFC). Enabling contactless payments through NFC-equipped mobile phones requires the co-operation of manufacturers, network operators, and retail merchants.
Additionally, in many lesser technologically developed regions smartphones are people's first and only means of Mobile broadband due to their portability, with personal computers being relatively uncommon outside of business use. The cameras on smartphones can be used to photograph documents and send them via email or Text messaging in place of using fax (facsimile) machines. Mobile payment on smartphones allow people to make less use of wallets, purses, credit and debit cards, and cash. Mobile banking apps can allow people to deposit checks simply by photographing them, eliminating the need to take the physical check to an ATM or teller. Guide book apps can take the place of paper travel and restaurant/business guides, museum brochures, and dedicated audio guide equipment.
A 2011 study reported that over 90% of college students surveyed text (initiate, reply or read) while driving. The scientific literature on the danger of driving while sending a text message from a mobile phone, or texting while driving, is limited. A simulation study at the University of Utah found a sixfold increase in distraction-related accidents when texting. Due to the complexity of smartphones that began to grow more after, this has introduced additional difficulties for law enforcement officials when attempting to distinguish one usage from another in drivers using their devices. This is more apparent in countries which ban both handheld and hands-free usage, rather than those which ban handheld use only, as officials cannot easily tell which function of the phone is being used simply by looking at the driver. This can lead to drivers being stopped for using their device illegally for a call when, in fact, they were using the device legally, for example, when using the phone's incorporated controls for car stereo, GPS or satnav.
A 2010 study reviewed the incidence of phone use while cycling and its effects on behavior and safety. In 2013 a national survey in the US reported the number of drivers who reported using their phones to access the Internet while driving had risen to nearly one of four. A study conducted by the University of Vienna examined approaches for reducing inappropriate and problematic use of mobile phones, such as using phones while driving.
Accidents involving a driver being distracted by being in a Telephone call on a phone have begun to be prosecuted as negligence similar to speeding. In the United Kingdom, from 27 February 2007, motorists who are caught using a handheld phone while driving will have three penalty points added to their license in addition to the fine of £60. This increase was introduced to try to stem the increase in drivers ignoring the law. Japan prohibits all use of phones while driving, including use of hands-free devices. New Zealand has banned handheld phone use since 1 November 2009. Many states in the United States have banned text messaging on phones while driving. Illinois became the 17th American state to enforce this law. As of July 2010, 30 states had banned texting while driving, with Kentucky becoming the most recent addition on July 15.
Public Health Law Research maintains a list of distracted driving laws in the United States. This database of laws provides a comprehensive view of the provisions of laws that restrict the use of mobile devices while driving for all 50 states and the District of Columbia between 1992, when first law was passed through December 1, 2010. The dataset contains information on 22 dichotomous, continuous or categorical variables including, for example, activities regulated (e.g., texting versus talking, hands-free versus handheld calls, web browsing, gaming), targeted populations, and exemptions.
Leaked documents published by WikiLeaks, codenamed Vault 7 and dated from 2013 to 2016, detail the capabilities of the United States Central Intelligence Agency (CIA) to perform electronic surveillance and cyber warfare, including the ability to compromise the operating systems of most smartphones (including iOS and Android).
Guidelines for mobile device security were issued by NIST and many other organizations. For conducting a private, in-person meeting, at least one site recommends that the user switch the smartphone off and disconnect the battery.
It has also been theorized that for some users, addiction to use of their phones, especially before they go to bed, can result in "ego depletion." Many people also use their phones as alarm clocks, which can also lead to loss of sleep.Kalsbeek, Andries (2012). The Neurobiology of Circadian Timing Elsevier. pp. 382.
Lithium-ion and Lithium-polymer batteries, those commonly powering portable electronics, additionally wear down more from fuller charge and deeper discharge cycles, and when unused for an extended amount of time while depleted, where self-discharging may lead to a harmful depth of discharge.
The functional life span of mobile phones may be limited by lack of software update support, such as deprecation of TLS cipher suites by certificate authority with no official patches provided for earlier devices.
|
|