Mathematics (from Ancient Greek μάθημα máthēma, "knowledge, study, learning") includes the study of such topics as quantity (number theory), structure (algebra),
space (geometry), and calculus (mathematical analysis).Mathematicians seek and use patterns to formulate new ; they resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, mathematical reasoning can be used to provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.
Logic first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen and . Mathematics developed at a relatively slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.Eves, p. 306
Mathematics is essential in many fields, including natural science, engineering, medicine, finance, and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics (mathematics for its own sake) without having any application in mind, but practical applications for what began as pure mathematics are often discovered later.Peterson, p. 12
As evidenced by tally sticks found on bone, in addition to recognizing how to counting physical objects, prehistoric peoples may have also recognized how to count abstract quantities, like time – days, seasons, years.See, for example, Raymond L. Wilder, Evolution of Mathematical Concepts; an Elementary Study, passim Evidence for more complex mathematics does not appear until around 3000 Before Christ, when the and Egyptians began using arithmetic, algebra and geometry for taxation and other financial calculations, for building and construction, and for astronomy.Kline 1990, Chapter 1. The most ancient mathematical texts from Mesopotamia and Ancient Egypt are from 2000–1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. It is in Babylonian mathematics that elementary arithmetic (addition, subtraction, multiplication and division) first appear in the archaeological record. The Babylonians also possessed a placevalue system, and used a sexagesimal numeral system which is still in use today for measuring angles and time. Beginning in the 6th century BC with the Pythagoreans, the Ancient Greeks began a systematic study of mathematics as a subject in its own right with Greek mathematics.
Around 300 BC, Euclid introduced the axiomatic method still used in mathematics today, consisting of definition, axiom, theorem, and proof. His textbook Elements is widely considered the most successful and influential textbook of all time. The greatest mathematician of antiquity is often held to be Archimedes (c. 287–212 BC) of Syracuse. He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus. Other notable achievements of Greek mathematics are conic sections (Apollonius of Perga, 3rd century BC), trigonometry (Hipparchus of Nicaea (2nd century BC), and the beginnings of algebra (Diophantus, 3rd century AD). The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics. Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine, and an early form of infinite series.During the Golden Age of Islam, especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra. Other notable achievements of the Islamic period are advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as AlKhwarismi, Omar Khayyam and Sharaf alDīn alṬūsī.
During the early modern period, mathematics began to develop at an accelerating pace in Western Europe. The development of calculus by Newton and Leibniz in the 17th century revolutionized mathematics. Leonhard Euler was the most notable mathematician of the 18th century, contributing numerous theorems and discoveries. Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Friedrich Gauss, who made numerous contributions to fields such as algebra, analysis, differential geometry, matrix theory, number theory, and statistics. In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems, which show in part that any consistent axiomatic system — if powerful enough to describe arithmetic — will contain true propositions that cannot be proved.
Mathematics has since been greatly extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today. According to Mikhail B. Sevryuk, in the January 2006 issue of the Bulletin of the American Mathematical Society, "The number of papers and books included in the Mathematical Reviews database since 1940 (the first year of operation of MR) is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical and their proofs."
Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense.
In Latin, and in English until around 1700, the term mathematics more commonly meant "astrology" (or sometimes "astronomy") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This has resulted in several mistranslations. For example, Saint Augustine's warning that Christians should beware of mathematici, meaning astrologers, is sometimes mistranslated as a condemnation of mathematicians.
The apparent plural form in English, like the French plural form les mathématiques (and the less commonly used singular derivative la mathématique), goes back to the Latin neuter plural mathematica (Cicero), based on the Greek plural τὰ μαθηματικά ( ta mathēmatiká), used by Aristotle (384–322 BC), and meaning roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of physics and metaphysics, which were inherited from Greek. The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", "mathematics" In English, the noun mathematics takes a singular verb. It is often shortened to maths or, in North America, math. "maths, n." and "math, n.3". Oxford English Dictionary, online version (2012).
An early definition of mathematics in terms of logic was Benjamin Peirce's "the science that draws necessary conclusions" (1870). In the Principia Mathematica, Bertrand Russell and Alfred North Whitehead advanced the philosophical program known as logicism, and attempted to prove that all mathematical concepts, statements, and principles can be defined and proved entirely in terms of symbolic logic. A logicist definition of mathematics is Russell's "All Mathematics is Symbolic Logic" (1903).
Intuitionist definitions, developing from the philosophy of mathematician L. E. J. Brouwer, identify mathematics with certain mental phenomena. An example of an intuitionist definition is "Mathematics is the mental activity which consists in carrying out constructs one after the other." A peculiarity of intuitionism is that it rejects some mathematical ideas considered valid according to other definitions. In particular, while other philosophies of mathematics allow objects that can be proved to exist even though they cannot be constructed, intuitionism allows only mathematical objects that one can actually construct. Intuitionists also reject the law of excluded middle — a stance which forces them to reject proof by contradiction as a viable proof method as well.
Formalist definitions identify mathematics with its symbols and the rules for operating on them. Haskell Curry defined mathematics simply as "the science of formal systems".
A formal system is a set of symbols, or tokens, and some rules on how the tokens are to be combined into formulas. In formal systems, the word axiom has a special meaning different from the ordinary meaning of "a selfevident truth", and is used to refer to a combination of tokens that is included in a given formal system without needing to be derived using the rules of the system.A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "Mathematics is what mathematicians do."
Some modern philosophers consider that mathematics is not a science. The philosopher Karl Popper observed that "most mathematical theories are, like those of physics and biology, hypothesisdeductive: pure mathematics therefore turns out to be much closer to the natural sciences whose hypotheses are conjectures, than it seemed even recently."Popper 1995, p. 56
Mathematics shares much in common with many fields in the physical sciences, notably the exploration of the logical consequences of assumptions. Intuition and experimentation also play a role in the formulation of in both mathematics and the (other) sciences. Experimental mathematics continues to grow in importance within mathematics, and computation and simulation are playing an increasing role in both the sciences and mathematics.
The opinions of mathematicians on this matter are varied. Many mathematiciansSee, for example Bertrand Russell's statement "Mathematics, rightly viewed, possesses not only truth, but supreme beauty ..." in his History of Western Philosophy feel that to call their area a science is to downplay the importance of its aesthetic side, and its history in the traditional seven liberal arts; others feel that to ignore its connection to the sciences is to turn a blind eye to the fact that the interface between mathematics and its applications in science and engineering has driven much development in mathematics. One way this difference of viewpoint plays out is in the philosophical debate as to whether mathematics is created (as in art) or discovered (as in science). It is common to see universities divided into sections that include a division of Science and Mathematics, indicating that the fields are seen as being allied but that they do not coincide. In practice, mathematicians are typically grouped with scientists at the gross level but separated at finer levels. This is one of many issues considered in the philosophy of mathematics.
Some mathematics is relevant only in the area that inspired it, and is applied to solve further problems in that area. But often mathematics inspired by one area proves useful in many areas, and joins the general stock of mathematical concepts. A distinction is often made between pure mathematics and applied mathematics. However pure mathematics topics often turn out to have applications, e.g. number theory in cryptography. This remarkable fact, that even the "purest" mathematics often turns out to have practical applications, is what Eugene Wigner has called "the unreasonable effectiveness of mathematics". As in most areas of study, the explosion of knowledge in the scientific age has led to specialization: there are now hundreds of specialized areas in mathematics and the latest Mathematics Subject Classification runs to 46 pages. Several areas of applied mathematics have merged with related traditions outside of mathematics and become disciplines in their own right, including statistics, operations research, and computer science.
For those who are mathematically inclined, there is often a definite aesthetic aspect to much of mathematics. Many mathematicians talk about the elegance of mathematics, its intrinsic aesthetics and inner beauty. Simplicity and generality are valued. There is beauty in a simple and elegant proof, such as Euclid's proof that there are infinitely many , and in an elegant numerical method that speeds calculation, such as the fast Fourier transform. G. H. Hardy in A Mathematician's Apology expressed the belief that these aesthetic considerations are, in themselves, sufficient to justify the study of pure mathematics. He identified criteria such as significance, unexpectedness, inevitability, and economy as factors that contribute to a mathematical aesthetic.
Mathematical research often seeks critical features of a mathematical object. A theorem expressed as a characterization of the object by these features is the prize. Examples of particularly succinct and revelatory mathematical arguments has been published in Proofs from THE BOOK.The popularity of recreational mathematics is another sign of the pleasure many find in solving mathematical questions. And at the other social extreme, philosophers continue to find problems in philosophy of mathematics, such as the nature of mathematical proof.
Mathematical language can be difficult to understand for beginners because even common terms, such as or and only, have a more precise meaning than they have in everyday speech, and other terms such as open set and field refer to specific mathematical ideas, not covered by their laymen's meanings. Mathematical language also includes many technical terms such as homeomorphism and Integral that have no meaning outside of mathematics. Additionally, shorthand phrases such as iff for "if and only if" belong to mathematical jargon. There is a reason for special notation and technical vocabulary: mathematics requires more precision than everyday speech. Mathematicians refer to this precision of language and logic as "rigor".
Mathematical proof is fundamentally a matter of rigor. Mathematicians want their theorems to follow from axioms by means of systematic reasoning. This is to avoid mistaken "", based on fallible intuitions, of which many instances have occurred in the history of the subject. The level of rigor expected in mathematics has varied over time: the Greeks expected detailed arguments, but at the time of Isaac Newton the methods employed were less rigorous. Problems inherent in the definitions used by Newton would lead to a resurgence of careful analysis and formal proof in the 19th century. Misunderstanding the rigor is a cause for some of the common misconceptions of mathematics. Today, mathematicians continue to argue among themselves about computerassisted proofs. Since large computations are hard to verify, such proofs may be erroneous if the used computer program is erroneous.Ivars Peterson, The Mathematical Tourist, Freeman, 1988, . p. 4 "A few complain that the computer program can't be verified properly", (in reference to the Haken–Apple proof of the Four Color Theorem). On the other hand, allow verifying all details that cannot be given in a handwritten proof, and provide certainty of the correctness of long proofs such as that of Feit–Thompson theorem.
in traditional thought were "selfevident truths", but that conception is problematic."The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil." Bertrand Russell (1919), Introduction to Mathematical Philosophy, New York and London, p. 71. At a formal level, an axiom is just a string of symbols, which has an intrinsic meaning only in the context of all derivable formulas of an axiomatic system. It was the goal of Hilbert's program to put all of mathematics on a firm axiomatic basis, but according to Gödel's incompleteness theorem every (sufficiently powerful) axiomatic system has undecidable formulas; and so a final axiomatization of mathematics is impossible. Nonetheless mathematics is often imagined to be (as far as its formal content) nothing but set theory in some axiomatization, in the sense that every mathematical statement or proof could be cast into formulas within set theory.Patrick Suppes, Axiomatic Set Theory, Dover, 1972, . p. 1, "Among the many branches of modern mathematics set theory occupies a unique place: with a few rare exceptions the entities which are studied and analyzed in mathematics may be regarded as certain particular sets or classes of objects."
Discrete mathematics conventionally groups together the fields of mathematics which study mathematical structures that are fundamentally discrete rather than continuous.
Mathematical logic is concerned with setting mathematics within a rigorous framework, and studying the implications of such a framework. As such, it is home to Gödel's incompleteness theorems which (informally) imply that any effective formal system that contains basic arithmetic, if sound (meaning that all theorems that can be proved are true), is necessarily incomplete (meaning that there are true theorems which cannot be proved in that system). Whatever finite collection of numbertheoretical axioms is taken as a foundation, Gödel showed how to construct a formal statement that is a true numbertheoretical fact, but which does not follow from those axioms. Therefore, no formal system is a complete axiomatization of full number theory. Modern logic is divided into recursion theory, model theory, and proof theory, and is closely linked to theoretical computer science, as well as to category theory. In the context of recursion theory, the impossibility of a full axiomatization of number theory can also be formally demonstrated as a consequence of the MRDP theorem.
Theoretical computer science includes computability theory, computational complexity theory, and information theory. Computability theory examines the limitations of various theoretical models of the computer, including the most wellknown model – the Turing machine. Complexity theory is the study of tractability by computer; some problems, although theoretically solvable by computer, are so expensive in terms of time or space that solving them is likely to remain practically unfeasible, even with the rapid advancement of computer hardware. A famous problem is the "" problem, one of the Millennium Prize Problems. Clay Mathematics Institute, P=NP, claymath.org Finally, information theory is concerned with the amount of data that can be stored on a given medium, and hence deals with concepts such as data compression and entropy.
$p\; \backslash Rightarrow\; q$   
Theory of computation 
As the number system is further developed, the integers are recognized as a subset of the ("fractions"). These, in turn, are contained within the , which are used to represent continuous quantities. Real numbers are generalized to . These are the first steps of a hierarchy of numbers that goes on to include and . Consideration of the natural numbers also leads to the transfinite numbers, which formalize the concept of "infinity". According to the fundamental theorem of algebra all solutions of equations in one unknown with complex coefficients are complex numbers, regardless of degree. Another area of study is the size of sets, which is described with the . These include the , which allow meaningful comparison of the size of infinitely large sets.
$(0),\; 1,\; 2,\; 3,\backslash ldots$  $\backslash ldots,2,\; 1,\; 0,\; 1,\; 2\backslash ,\backslash ldots$  $2,\; \backslash frac\{2\}\{3\},\; 1.21$  $e,\; \backslash sqrt\{2\},\; 3,\; \backslash pi$  $2,\; i,\; 2+3i,\; 2e^\{i\backslash frac\{4\backslash pi\}\{3\}\}$ $\backslash aleph\_0,\; \backslash aleph\_1,\; \backslash aleph\_2,\; \backslash ldots,\; \backslash aleph\_\{\backslash alpha\},\; \backslash ldots.\backslash $ 
Infinite cardinals 
By its great generality, abstract algebra can often be applied to seemingly unrelated problems; for instance a number of ancient problems concerning compass and straightedge constructions were finally solved using Galois theory, which involves field theory and group theory. Another example of an algebraic theory is linear algebra, which is the general study of , whose elements called vectors have both quantity and direction, and can be used to model (relations between) points in space. This is one example of the phenomenon that the originally unrelated areas of geometry and algebra have very strong interactions in modern mathematics. Combinatorics studies ways of enumerating the number of objects that fit a given structure.
$\backslash begin\{matrix\}\; (1,2,3)\; \&\; (1,3,2)\; \backslash \backslash \; (2,1,3)\; \&\; (2,3,1)\; \backslash \backslash \; (3,1,2)\; \&\; (3,2,1)\; \backslash end\{matrix\}$      
Algebra 
      
Measure theory 
Complex analysis 
In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics, where mathematics is developed primarily for its own sake. Thus, the activity of applied mathematics is vitally connected with research in pure mathematics.
Statistical theory studies decision problems such as minimizing the risk (expected loss) of a statistical action, such as using a procedure in, for example, parameter estimation, hypothesis testing, and selecting the best. In these traditional areas of mathematical statistics, a statisticaldecision problem is formulated by minimizing an objective function, like expected loss or cost, under specific constraints: For example, designing a survey often involves minimizing the cost of estimating a population mean with a given level of confidence.
Because of its use of optimization, the mathematical theory of statistics shares concerns with other , such as operations research, control theory, and mathematical economics.:
Cryptography 
Control theory 
The Wolf Prize in Mathematics, instituted in 1978, recognizes lifetime achievement, and another major international award, the Abel Prize, was instituted in 2003. The Chern Medal was introduced in 2010 to recognize lifetime achievement. These accolades are awarded in recognition of a particular body of work, which may be innovational, or provide a solution to an outstanding problem in an established field.
A famous list of 23 , called "Hilbert's problems", was compiled in 1900 by German mathematician David Hilbert. This list achieved great celebrity among mathematicians, and at least nine of the problems have now been solved. A new list of seven important problems, titled the "Millennium Prize Problems", was published in 2000. Only one of them, the Riemann hypothesis, duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward. Currently, only one of these problems, the Poincaré Conjecture, has been solved.

