Photosynthesis ( ) is a system of biological processes by which photopigment-bearing , such as most , algae and cyanobacteria, convert light energy — typically from sunlight — into the chemical energy necessary to fuel their metabolism. The term photosynthesis usually refers to oxygenic photosynthesis, a process that releases oxygen as a byproduct of water splitting. Photosynthetic organisms store the converted chemical energy within the chemical bond of intracellular (complex compounds containing carbon), typically like (mainly glucose, fructose and sucrose), , phytoglycogen and cellulose. When needing to use this stored energy, an organism's cells then metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
Some organisms also perform anoxygenic photosynthesis, which does not produce oxygen. Some bacteria (e.g. purple bacteria) uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, releasing sulfur instead of oxygen, which was a dominant form of photosynthesis in the euxinic during the Boring Billion. Archaea such as Halobacterium also perform a type of non-carbon fixation anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and produce a proton (hydron) gradient across the cell membrane, and the subsequent chemiosmosis powers transmembrane to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).
While the details may differ between species, the process always begins when light energy is absorbed by the , proteins that contain photosynthetic pigments or . In plants, these pigments are (a porphyrin derivative that absorbs the red and blue optical spectrum of light, thus reflecting green) held inside , abundant in leaf cells. In cyanobacteria, they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two important molecules that participate in energetic processes: reduced nicotinamide adenine dinucleotide phosphate (NADPH) and ATP.
In plants, algae, and cyanobacteria, sugars are synthesized by a subsequent sequence of reactions called the Calvin cycle. In this process, atmospheric carbon dioxide is incorporated into already existing organic compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose. In other bacteria, different mechanisms like the reverse Krebs cycle are used to achieve the same end.
The first photosynthetic organisms probably evolved early in the evolutionary history of life using such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons. Cyanobacteria appeared later; the Oxygen cycle they produced contributed directly to the oxygenation of the Earth, which rendered the evolution of complex life possible. The average rate of energy captured by global photosynthesis is approximately 130 terawatts,
In , algae, and cyanobacteria, photosynthesis releases oxygen. This oxygenic photosynthesis is by far the most common type of photosynthesis used by living organisms. Some shade-loving plants (sciophytes) produce such low levels of oxygen during photosynthesis that they use all of it themselves instead of releasing it to the atmosphere.
Although there are some differences between oxygenic photosynthesis in plants, algae, and cyanobacteria, the overall process is quite similar in these organisms. There are also many varieties of anoxygenic photosynthesis, used mostly by bacteria, which consume carbon dioxide but do not release oxygen or which produce elemental sulfur instead of molecular oxygen.
Carbon dioxide is converted into sugars in a process called carbon fixation; photosynthesis captures energy from sunlight to convert carbon dioxide into . Carbon fixation is an endothermic redox reaction. In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids. These nutrients are oxidized to produce carbon dioxide and water, and to release chemical energy to drive the organism's metabolism.
Photosynthesis and cellular respiration are distinct processes, as they take place through different sequences of chemical reactions and in different cellular compartments (cellular respiration in mitochondria).
The general equation for photosynthesis as first proposed by Cornelis van Niel is:
Since water is used as the electron donor in oxygenic photosynthesis, the equation for this process is:
This equation emphasizes that water is both a reactant in the light-dependent reaction and a product of the light-independent reaction, but canceling n water molecules from each side gives the net equation:
Other processes substitute other compounds (such as arsenite) for water in the electron-supply role; for example some microbes use sunlight to oxidize arsenite to arsenate: Anaerobic Photosynthesis, Chemical & Engineering News, 86, 33, August 18, 2008, p. 36 The equation for this reaction is:
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
Most organisms that use oxygenic photosynthesis use Visible spectrum for the light-dependent reactions, although at least three use shortwave infrared or, more specifically, far-red radiation.
Some organisms employ even more radical variants of photosynthesis. Some archaea use a simpler method that employs a pigment similar to those used for vision in animals. The bacteriorhodopsin changes its configuration in response to sunlight, acting as a proton pump. This produces a proton gradient more directly, which is then converted to chemical energy. The process does not involve carbon dioxide fixation and does not release oxygen, and seems to have evolved separately from the more common types of photosynthesis.
In plants and algae, photosynthesis takes place in called . A typical plant cell contains about 10 to 100 chloroplasts. The chloroplast is enclosed by a membrane. This membrane is composed of a phospholipid inner membrane, a phospholipid outer membrane, and an intermembrane space. Enclosed by the membrane is an aqueous fluid called the stroma. Embedded within the stroma are stacks of thylakoids (grana), which are the site of photosynthesis. The thylakoids appear as flattened disks. The thylakoid itself is enclosed by the thylakoid membrane, and within the enclosed volume is a lumen or thylakoid space. Embedded in the thylakoid membrane are integral and peripheral membrane protein complexes of the photosynthetic system.
Plants absorb light primarily using the pigment chlorophyll. The green part of the light spectrum is not absorbed but is reflected, which is the reason that most plants have a green color. Besides chlorophyll, plants also use pigments such as and . Algae also use chlorophyll, but various other pigments are present, such as phycocyanin, , and in green algae, phycoerythrin in red algae (rhodophytes) and fucoxanthin in brown algae and diatoms resulting in a wide variety of colors.
These pigments are embedded in plants and algae in complexes called antenna proteins. In such proteins, the pigments are arranged to work together. Such a combination of proteins is also called a light-harvesting complex.
Although all cells in the green parts of a plant have chloroplasts, the majority of those are found in specially adapted structures called leaf. Certain species adapted to conditions of strong sunlight and , such as many Euphorbia and cactus species, have their main photosynthetic organs in their stems. The cells in the interior tissues of a leaf, called the mesophyll tissue, can contain between 450,000 and 800,000 chloroplasts for every square millimeter of leaf. The surface of the leaf is coated with a water-resistant Plant cuticle that protects the leaf from excessive evaporation of water and decreases the absorption of ultraviolet or blue light to minimize . The transparent epidermis layer allows light to pass through to the Mesophyll tissue mesophyll cells where most of the photosynthesis takes place.
The overall equation for the light-dependent reactions under the conditions of non-cyclic electron flow in green plants is:
Not all of light can support photosynthesis. The photosynthetic action spectrum depends on the type of accessory pigments present. For example, in green plants, the action spectrum resembles the absorption spectrum for and with absorption peaks in violet-blue and red light. In red algae, the action spectrum is blue-green light, which allows these algae to use the blue end of the spectrum to grow in the deeper waters that filter out the longer wavelengths (red light) used by above-ground green plants. The non-absorbed part of the light spectrum is what gives photosynthetic organisms their color (e.g., green plants, red algae, purple bacteria) and is the least effective for photosynthesis in the respective .
In the non-cyclic reaction, the photons are captured in the light-harvesting of Photosystem by chlorophyll and other accessory pigments (see diagram "Z-scheme"). The absorption of a photon by the antenna complex loosens an electron by a process called photoinduced charge separation. The antenna system is at the core of the chlorophyll molecule of the photosystem II reaction center. That loosened electron is taken up by the primary electron-acceptor molecule, pheophytin. As the electrons are shuttled through an electron transport chain (the so-called Z-scheme shown in the diagram), a chemiosmotic potential is generated by pumping proton cations (Hydrogen+) across the Cell membrane and into the thylakoid space. An ATP synthase enzyme uses that chemiosmotic potential to make ATP during photophosphorylation, whereas NADPH is a product of the terminal redox reaction in the Z-scheme. The electron enters a chlorophyll molecule in Photosystem I. There it is further excited by the light absorbed by that photosystem. The electron is then passed along a chain of electron acceptors to which it transfers some of its energy. The energy delivered to the electron acceptors is used to move across the thylakoid membrane into the lumen. The electron is eventually used to Redox the coenzyme NADP with an H+ to NADPH (which has functions in the light-independent reaction); at that point, the path of that electron ends.
The cyclic reaction is similar to that of the non-cyclic but differs in that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns to photosystem I, from where it was emitted, hence the name cyclic reaction.
Carbon fixation produces the three-carbon sugar intermediate, which is then converted into the final carbohydrate products. The Monosaccharide photosynthesis produces are then used to form other , such as the building material cellulose, the precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in but also in when the carbon and energy from plants is passed through a food chain.
The fixation or Redox of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar, ribulose 1,5-bisphosphate, to yield two of a three-carbon compound, glycerate 3-phosphate, also known as 3-phosphoglycerate. Glycerate 3-phosphate, in the presence of ATP and NADPH produced during the light-dependent stages, is reduced to glyceraldehyde 3-phosphate. This product is also referred to as 3-phosphoglyceraldehyde (PGAL) or, more generically, as triose phosphate. Most (five out of six molecules) of the glyceraldehyde 3-phosphate produced are used to regenerate ribulose 1,5-bisphosphate so the process can continue. The triose phosphates not thus "recycled" often condense to form hexose phosphates, which ultimately yield sucrose, starch, and cellulose, as well as glucose and fructose. The produced during carbon metabolism yield that can be used for other metabolic reactions like the production of amino acids and lipids.
Plants that use the C4 carbon fixation process chemically fix carbon dioxide in the cells of the mesophyll by adding it to the three-carbon molecule phosphoenolpyruvate (PEP), a reaction Catalysis by an enzyme called PEP carboxylase, creating the four-carbon organic acid oxaloacetic acid. Oxaloacetic acid or malate synthesized by this process is then translocated to specialized bundle sheath cells where the enzyme RuBisCO and other Calvin cycle enzymes are located, and where released by decarboxylation of the four-carbon acids is then fixed by RuBisCO activity to the three-carbon 3-phosphoglyceric acids. The physical separation of RuBisCO from the oxygen-generating light reactions reduces photorespiration and increases fixation and, thus, the photosynthetic capacity of the leaf. plants can produce more sugar than plants in conditions of high light and Thermophile. Many important crop plants are plants, including maize, sorghum, sugarcane, and millet. Plants that do not use PEP-carboxylase in carbon fixation are called C3 plants because the primary Carboxylation, catalyzed by RuBisCO, produces the three-carbon 3-phosphoglyceric acids directly in the Calvin-Benson cycle. Over 90% of plants use carbon fixation, compared to 3% that use carbon fixation; however, the evolution of in over sixty plant lineages makes it a striking example of convergent evolution. C2 photosynthesis, which involves carbon-concentration by selective breakdown of photorespiratory glycine, is both an evolutionary precursor to and a useful carbon-concentrating mechanism in its own right.
Xerophytes, such as cacti and most succulents, also use PEP carboxylase to capture carbon dioxide in a process called Crassulacean acid metabolism (CAM). In contrast to metabolism, which spatially separates the fixation to PEP from the Calvin cycle, CAM temporally separates these two processes. CAM plants have a different leaf anatomy from plants, and fix the at night, when their stomata are open. CAM plants store the mostly in the form of malic acid via carboxylation of phosphoenolpyruvate to oxaloacetate, which is then reduced to malate. Decarboxylation of malate during the day releases inside the leaves, thus allowing carbon fixation to 3-phosphoglycerate by RuBisCO. CAM is used by 16,000 species of plants.
Calcium oxalate-accumulating plants, such as Amaranthus hybridus and Colobanthus quitensis, show a variation of photosynthesis where calcium oxalate crystals function as dynamic Carbon sink, supplying carbon dioxide (CO2) to photosynthetic cells when stomata are partially or totally closed. This process was named alarm photosynthesis. Under stress conditions (e.g., Water scarcity), oxalate released from calcium oxalate crystals is converted to CO2 by an oxalate oxidase enzyme, and the produced CO2 can support the Calvin cycle reactions. Reactive hydrogen peroxide (H2O2), the By-product of oxalate oxidase reaction, can be neutralized by catalase. Alarm photosynthesis represents a photosynthetic variant to be added to the well-known C4 and CAM pathways. However, alarm photosynthesis, in contrast to these pathways, operates as a biochemical pump that collects carbon from the organ interior (or from the soil) and not from the atmosphere.
Energy transfer in antenna chlorophyll | Femtosecond to picosecond |
Picosecond to nanosecond | |
Microsecond to millisecond | |
Carbon fixation and export of stable products | Millisecond to second |
Actual plants' photosynthetic efficiency varies with the frequency of the light being converted, Irradiance, temperature, and proportion of carbon dioxide in the atmosphere, and can vary from 0.1% to 8%. By comparison, solar panels convert light into electric energy at an efficiency of approximately 6–20% for Mass production panels, and above 40% in laboratory devices. are studying photosynthesis in hopes of developing plants with increased Crop yield.
The efficiency of both light and dark reactions can be measured, but the relationship between the two can be complex. For example, the Light reactions creates ATP and NADPH energy , which C3 plants can use for carbon fixation or photorespiration.
Chlorophyll fluorescence of photosystem II can measure the light reaction, and infrared gas analyzers can measure the dark reaction. An integrated chlorophyll fluorometer and gas exchange system can investigate both light and dark reactions when researchers use the two separate Computer Systems together. Infrared gas analyzers and some Hygrometer are sensitive enough to measure the photosynthetic assimilation of CO2 and of Relative change2O using Methodology. CO2 is commonly measured in /(Square metre/Second), parts per million, or volume per million; and H2O is commonly measured in /(m2/s) or in . By measuring CO2 assimilation, ΔH2O, leaf temperature, barometric pressure, leaf area, and photosynthetically active radiation (PAR), it becomes possible to estimate, "A" or carbon assimilation, "E" or transpiration, "gs" or stomatal conductance, and "Ci" or intracellular CO2. However, it is more common to use chlorophyll fluorescence for plant stress measurement, where appropriate, because the most commonly used parameters FV/FM and Y(II) or F/FM' can be measured in a few seconds, allowing the investigation of larger plant populations.
Gas exchange systems that offer control of CO2 levels, above and below Ambient pressure, allow the common practice of measurement of A/Ci curves, at different CO2 levels, to characterize a plant's photosynthetic response.
Integrated chlorophyll fluorometer – gas exchange systems allow a more precise measure of photosynthetic response and mechanisms. While standard gas exchange photosynthesis systems can measure Ci, or substomatal CO2 levels, the addition of integrated chlorophyll fluorescence measurements allows a more precise measurement of CC, the estimation of CO2 concentration at the site of carboxylation in the chloroplast, to replace Ci. CO2 concentration in the chloroplast becomes possible to estimate with the measurement of mesophyll conductance or gm using an integrated system.
Photosynthesis measurement systems are not designed to directly measure the amount of light the leaf absorbs, but analysis of chlorophyll fluorescence, P700- and P515-absorbance, and gas exchange measurements reveal detailed information about, e.g., the , quantum efficiency and the CO2 assimilation rates. With some instruments, even wavelength dependency of the photosynthetic efficiency can be Analysis.
A phenomenon known as quantum walk increases the efficiency of the energy transport of light significantly. In the photosynthetic cell of an Algae, Bacteria, or plant, there are light-sensitive molecules called arranged in an antenna-shaped structure called a photocomplex. When a photon is absorbed by a chromophore, it is converted into a quasiparticle referred to as an exciton, which jumps from chromophore to chromophore towards the reaction center of the photocomplex, a collection of molecules that traps its energy in a chemical form accessible to the cell's metabolism. The exciton's wave properties enable it to cover a wider area and try out several possible paths simultaneously, allowing it to instantaneously "choose" the most efficient route, where it will have the highest probability of arriving at its destination in the minimum possible time.
Because that quantum walking takes place at temperatures far higher than quantum phenomena usually occur, it is only possible over very short distances. Obstacles in the form of destructive interference cause the particle to lose its wave properties for an instant before it regains them once again after it is freed from its locked position through a classic "hop". The movement of the electron towards the photo center is therefore covered in a series of conventional hops and quantum walks.
Oxygen evolution is the main source of oxygen in the Earth's atmosphere, and its earliest appearance is sometimes referred to as the oxygen catastrophe. Geology evidence suggests that oxygenic photosynthesis, such as that in cyanobacteria, became important during the Paleoproterozoic era around two billion years ago. Modern photosynthesis in and most photosynthetic is oxygenic, using water as an electron donor, which is oxidized to molecular oxygen in the photosynthetic reaction center.
An even closer form of symbiosis may explain the origin of chloroplasts. Chloroplasts have many similarities with photosynthetic bacteria, including a circular chromosome, prokaryotic-type ribosome, and similar proteins in the photosynthetic reaction center. The endosymbiotic theory suggests that photosynthetic bacteria were acquired (by endocytosis) by early eukaryotic cells to form the first plant cells. Therefore, chloroplasts may be photosynthetic bacteria that adapted to life inside plant cells. Like mitochondria, chloroplasts possess their own DNA, separate from the nuclear DNA of their plant host cells and the genes in this chloroplast DNA resemble those found in cyanobacteria. DNA in chloroplasts codes for redox proteins such as those found in the photosynthetic reaction centers. The CoRR Hypothesis proposes that this co-location of genes with their gene products is required for redox regulation of gene expression, and accounts for the persistence of DNA in bioenergetic .
Except for the euglenids, which are found within the Excavata, all of these belong to the Diaphoretickes. Archaeplastida and the photosynthetic Paulinella got their plastids, which are surrounded by two membranes, through primary Endosymbiont in two separate events, by engulfing a cyanobacterium. The plastids in all the other groups have either a red or green algal origin, and are referred to as the "red lineages" and the "green lineages". The only known exception is the ciliate Pseudoblepharisma tenue, which in addition to its plastids that originated from green algae also has a purple sulfur bacterium as symbiont. In dinoflagellates and euglenids the plastids are surrounded by three membranes, and in the remaining lines by four. A nucleomorph, remnants of the original algal nucleus located between the inner and outer membranes of the plastid, is present in the cryptophytes (from a red alga) and chlorarachniophytes (from a green alga). Some dinoflagellates that lost their photosynthetic ability later regained it again through new endosymbiotic events with different algae. While able to perform photosynthesis, many of these eukaryotic groups are and practice to various degrees.
With a possible exception of Heimdallarchaeota, photosynthesis is not found in archaea. Haloarchaea are ; they can absorb energy from the sun, but do not harvest carbon from the atmosphere and are therefore not photosynthetic. Instead of chlorophyll they use rhodopsins, which convert light-energy to ion gradients but cannot mediate electron transfer reactions.
In bacteria eight photosynthetic lineages are currently known:
Jan van Helmont began the research of the process in the mid-17th century when he carefully measured the mass of the soil a plant was using and the mass of the plant as it grew. After noticing that the soil mass changed very little, he Hypothesis that the mass of the growing plant must come from the water, the only substance he added to the potted plant. His hypothesis was partially accurate – much of the gained mass comes from carbon dioxide as well as water. However, this was a signaling point to the idea that the bulk of a plant's biomass comes from the inputs of photosynthesis, not the soil itself.
Joseph Priestley, a chemist and minister, discovered that when he isolated a volume of air under an inverted jar and burned a candle in it (which gave off Carbon dioxide), the candle would burn out very quickly, much before it ran out of wax. He further discovered that a mouse could similarly Breathing air. He then showed that a plant could restore the air the candle and the mouse had "injured."
In 1779, Jan Ingenhousz repeated Priestley's . He discovered that it was the influence of sunlight on the plant that could cause it to revive a mouse in a matter of hours.
In 1796, Jean Senebier, a Swiss pastor, botanist, and naturalist, demonstrated that green plants consume carbon dioxide and release oxygen under the influence of light. Soon afterward, Nicolas-Théodore de Saussure showed that the increase in mass of the plant as it grows could not be due only to uptake of CO2 but also to the incorporation of water. Thus, the basic reaction by which use photosynthesis to produce food (such as glucose) was outlined.
Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light. With the red alone, the light reactions were suppressed. When blue and red were combined, the output was much more substantial. Thus, there were two photosystems, one absorbing up to 600 nm wavelengths, the other up to 700 nm. The former is known as PSII, the latter is PSI. PSI contains only chlorophyll "a", PSII contains primarily chlorophyll "a" with most of the available chlorophyll "b", among other pigments. These include phycobilins, which are the red and blue pigments of red and blue algae, respectively, and fucoxanthol for brown algae and diatoms. The process is most productive when the absorption of quanta is equal in both PSII and PSI, assuring that input energy from the antenna complex is divided between the PSI and PSII systems, which in turn powers the photochemistry.
Robert Hill thought that a complex of reactions consisted of an intermediate to cytochrome b6 (now a plastoquinone), and that another was from cytochrome f to a step in the carbohydrate-generating mechanisms. These are linked by plastoquinone, which does require energy to reduce cytochrome f. Further experiments to prove that the oxygen developed during the photosynthesis of green plants came from water were performed by Hill in 1937 and 1939. He showed that isolated give off oxygen in the presence of unnatural reducing agents like iron oxalate, ferricyanide or benzoquinone after exposure to light. In the Hill reaction:
A is the electron acceptor. Therefore, in light, the electron acceptor is reduced and oxygen is evolved. Sam Ruben and Martin Kamen used Radionuclide to determine that the oxygen liberated in photosynthesis came from the water.
Melvin Calvin and Andrew Benson, along with James Bassham, elucidated the path of carbon assimilation (the photosynthetic carbon reduction cycle) in plants. The carbon reduction cycle is known as the Calvin cycle, but many scientists refer to it as the Calvin-Benson, Benson-Calvin, or even Calvin-Benson-Bassham (or CBB) Cycle.
Nobel Prize–winning scientist Rudolph A. Marcus was later able to discover the function and significance of the electron transport chain.
Otto Heinrich Warburg and Dean Burk discovered the I-quantum photosynthesis reaction that splits CO2, activated by the respiration. Otto Warburg – Biography . Nobelprize.org (1970-08-01). Retrieved on 2011-11-03.
In 1950, first experimental evidence for the existence of photophosphorylation in vivo was presented by Otto Kandler using intact Chlorella cells and interpreting his findings as light-dependent ATP formation. In 1954, Daniel I. Arnon et al. discovered photophosphorylation in vitro in isolated with the help of P32.
Louis N. M. Duysens and Jan Amesz discovered that chlorophyll "a" will absorb one light, oxidize cytochrome f, while chlorophyll "a" (and other pigments) will absorb another light but will reduce this same oxidized cytochrome, stating the two light reactions are in series.
Later in 1958–1963 at Cornell University, field grown maize was reported to have much greater leaf photosynthetic rates of 40 μmol CO2·m−2·s−1 and not be saturated at near full sunlight. This higher rate in maize was almost double of those observed in other species such as wheat and soybean, indicating that large differences in photosynthesis exist among higher plants. At the University of Arizona, detailed gas exchange research on more than 15 species of Monocotyledon and Dicotyledon uncovered for the first time that differences in leaf anatomy are crucial factors in differentiating photosynthetic capacities among species. In tropical grasses, including maize, sorghum, sugarcane, Bermuda grass and in the dicot amaranthus, leaf photosynthetic rates were around 38−40 μmol CO2·m−2·s−1, and the leaves have two types of green cells, i.e. outer layer of mesophyll cells surrounding a tightly packed cholorophyllous vascular bundle sheath cells. This type of anatomy was termed Kranz anatomy in the 19th century by the botanist Gottlieb Haberlandt while studying leaf anatomy of sugarcane. Plant species with the greatest photosynthetic rates and Kranz anatomy showed no apparent photorespiration, very low CO2 compensation point, high optimum temperature, high stomatal resistances and lower mesophyll resistances for gas diffusion and rates never saturated at full sun light. The research at Arizona was designated a Citation Classic in 1986. These species were later termed C4 plants as the first stable compound of CO2 fixation in light has four carbons as malate and aspartate. Other species that lack Kranz anatomy were termed C3 type such as cotton and sunflower, as the first stable carbon compound is the three-carbon PGA. At 1000 ppm CO2 in measuring air, both the C3 and C4 plants had similar leaf photosynthetic rates around 60 μmol CO2·m−2·s−1 indicating the suppression of photorespiration in C3 plants.
Total photosynthesis is limited by a range of environmental factors. These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying out photosynthesis.
The radiation climate within plant communities is extremely variable, in both time and space.
In the early 20th century, Frederick Blackman and Gabrielle Matthaei investigated the effects of light intensity (irradiance) and temperature on the rate of carbon assimilation.
These two experiments illustrate several important points: First, it is known that, in general, photochemical reactions are not affected by temperature. However, these experiments clearly show that temperature affects the rate of carbon assimilation, so there must be two sets of reactions in the full process of carbon assimilation. These are the light-dependent 'photochemical' temperature-independent stage, and the light-independent, temperature-dependent stage. Second, Blackman's experiments illustrate the concept of . Another limiting factor is the wavelength of light. Cyanobacteria, which reside several meters underwater, cannot receive the correct wavelengths required to cause photoinduced charge separation in conventional photosynthetic pigments. To combat this problem, Cyanobacteria have a light-harvesting complex called Phycobilisome. This complex is made up of a series of proteins with different pigments which surround the reaction center.
RuBisCO oxygenase activity is disadvantageous to plants for several reasons:
The salvaging pathway for the products of RuBisCO oxygenase activity is more commonly known as photorespiration, since it is characterized by light-dependent oxygen consumption and the release of carbon dioxide.
|
|