A chloroplast () is a type of organelle known as a plastid that conducts photosynthesis mostly in plant cell and algae. Chloroplasts have a high concentration of chlorophyll pigments which capture the Radiant energy and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.
Chloroplasts are highly dynamic—they circulate and are moved around within cells. Their behavior is strongly influenced by environmental factors like light color and intensity. Chloroplasts cannot be made anew by the plant cell and must be inherited by each daughter cell during cell division, which is thought to be inherited from their ancestor—a photosynthetic cyanobacterium that was symbiogenesis by an early eukaryotic cell.
Chloroplasts evolved from an ancient cyanobacterium that was engulfed by an early eukaryotic cell. Because of their endosymbiotic origins, chloroplasts, like mitochondria, contain their own DNA separate from the cell nucleus. With one exception (the amoeboid Paulinella chromatophora), all chloroplasts can be traced back to a single endosymbiotic event. Despite this, chloroplasts can be found in extremely diverse organisms that are not directly related to each other—a consequence of many secondary and even tertiary endosymbiotic events.
The word chloroplast is derived from the Greek language words chloros (χλωρός), which means green, and plastes (πλάστης), which means "the one who forms".
Mitochondrion are thought to have come from a similar endosymbiosis event, where an Aerobic organism prokaryote was engulfed.
Chloroplasts which can be traced back directly to a cyanobacterial ancestor (i.e. without a subsequent endosymbiotic event) are known as primary plastids ("plastid" in this context means almost the same thing as chloroplast). Chloroplasts that can be traced back to another photosynthetic eukaryotic endosymbiont are called secondary plastids or tertiary plastids (discussed below).
Whether primary chloroplasts came from a single endosymbiotic event or multiple independent engulfments across various eukaryotic lineages was long debated. It is now generally held that with one exception (the amoeboid Paulinella chromatophora), chloroplasts arose from a single endosymbiotic event around twobillion years ago and these chloroplasts all share monophyly. It has been proposed this the closest living relative of the ancestral engulfed cyanobacterium is Gloeomargarita lithophora. Separately, somewhere about 90–140 million years ago, this process happened again in the amoeboid Paulinella with a cyanobacterium in the genus Prochlorococcus. This independently evolved chloroplast is often called a chromatophore instead of a chloroplast.Not to be confused with chromatophore—the pigmented cells in some animals—or chromatophore—the membrane associated vesicle in some bacteria.
Chloroplasts are believed to have arisen after Mitochondrion, since all contain mitochondria, but not all have chloroplasts. This is called serial endosymbiosis—where an early eukaryote engulfed the mitochondrion ancestor, and then descendants of it then engulfed the chloroplast ancestor, creating a cell with both chloroplasts and mitochondria.
As a result of the secondary endosymbiotic event, secondary chloroplasts have additional membranes outside of the original two in primary chloroplasts. In secondary plastids, typically only the chloroplast, and sometimes its cell membrane and Cell nucleus remain, forming a chloroplast with three or four membranes—the two cyanobacterial membranes, sometimes the eaten alga's cell membrane, and the phagosomal vacuole from the host's cell membrane.
The genes in the phagocytosed eukaryote's nucleus are often transferred to the secondary host's nucleus. and chlorarachniophytes retain the phagocytosed eukaryote's nucleus, an object called a nucleomorph, located between the second and third membranes of the chloroplast.
All secondary chloroplasts come from green algae and red algae. No secondary chloroplasts from glaucophytes have been observed, probably because glaucophytes are relatively rare in nature, making them less likely to have been taken up by another eukaryote.
Still other organisms, including the dinoflagellates Karlodinium and Karenia, obtained chloroplasts by engulfing an organism with a secondary plastid. These are called tertiary plastids. events. For clarity, dinophyte tertiary endosymbioses and many nonphotosynthetic lineages have been omitted. ---- a It is now established that Chromalveolata is paraphyletic to Rhizaria.]]
Most green chloroplasts are green in color, though some aren't due to accessory pigments that override the green from chlorophylls, such as in the resting cells of Haematococcus pluvialis. Green chloroplasts differ from glaucophyte and red algal chloroplasts in that they have lost their , and contain chlorophyll b. They have also lost the peptidoglycan wall between their double membrane, leaving an intermembrane space. Some have kept some required the synthesis of peptidoglycan, but have repurposed them for use in chloroplast division instead. Chloroplastida lineages also keep their starch inside their chloroplasts. In plants and some algae, the chloroplast thylakoids are arranged in grana stacks. Some green algal chloroplasts, as well as those of hornworts, contain a structure called a pyrenoid, that concentrate RuBisCO and CO in the chloroplast, functionally similar to the glaucophyte carboxysome.
There are some lineages of non-photosynthetic parasitic green algae that have lost their chloroplasts entirely, such as Prototheca, or have no chloroplast while retaining the separate chloroplast genome, as in Helicosporidium. Morphological and physiological similarities, as well as phylogenetics, confirm that these are lineages that ancestrally had chloroplasts but have since lost them.
The chromatophore is highly reduced compared to its free-living cyanobacterial relatives and has limited functions. For example, it has a genome of about 1 million , one third the size of Synechococcus genomes, and only encodes around 850 proteins. However, this is still much larger than other chloroplast genomes, which are typically around 150,000 base pairs. Chromatophores have also transferred much less of their DNA to the nucleus of their hosts. About 0.3–0.8% of the nuclear DNA in Paulinella is from the chromatophore, compared with 11–14% from the chloroplast in plants. Similar to other chloroplasts, Paulinella provides specific proteins to the chromatophore using a specific targeting sequence. Because chromatophores are much younger compared to the canoncial chloroplasts, Paulinella chromatophora is studied to understand how early chloroplasts evolved.
Chlorarachniophyte chloroplasts are bounded by four membranes, except near the cell membrane, where the chloroplast membranes fuse into a double membrane. Their thylakoids are arranged in loose stacks of three. Chlorarachniophytes have a form of polysaccharide called chrysolaminarin, which they store in the cytoplasm, often collected around the chloroplast pyrenoid, which bulges into the cytoplasm.
Chlorarachniophyte chloroplasts are notable because the green alga they are derived from has not been completely broken down—its nucleus still persists as a nucleomorph found between the second and third chloroplast membranes—the periplastid space, which corresponds to the green alga's cytoplasm.
However, chromist monophyly has been rejected, and it is considered more likely that some chromists acquired their plastids by incorporating another chromist instead of inheriting them from a common ancestor. seem to have acquired plastids from red algae, which were then transmitted from them to both the Ochrophyte and the , and then from these last to the Myzozoa.
Cryptophytes may have played a key role in the spreading of red algal based chloroplasts.
Heterokont chloroplasts are very similar to haptophyte chloroplasts. They have a pyrenoid, triplet thylakoids, and, with some exceptions, four layer plastidic envelope with the outermost membrane connected to the endoplasmic reticulum. Like haptophytes, stramenopiles store sugar in chrysolaminarin granules in the cytoplasm. Stramenopile chloroplasts contain chlorophyll a and, with a few exceptions, Chlorophyll c. They also have which give them their many colors.
The fact that apicomplexans still keep their nonphotosynthetic chloroplast around demonstrates how the chloroplast carries out important functions other than photosynthesis. Plant chloroplasts provide plant cells with many important things besides sugar, and apicoplasts are no different—they synthesize , isopentenyl pyrophosphate, iron-sulfur clusters, and carry out part of the heme pathway. The most important apicoplast function is isopentenyl pyrophosphate synthesis—in fact, apicomplexans die when something interferes with this apicoplast function, and when apicomplexans are grown in an isopentenyl pyrophosphate-rich medium, they dump the organelle.
The most common dinophyte chloroplast is the peridinin-type chloroplast, characterized by the carotenoid pigment peridinin in their chloroplasts, along with chlorophyll a and chlorophyll c2. Peridinin is not found in any other group of chloroplasts. The peridinin chloroplast is bounded by three membranes (occasionally two), having lost the red algal endosymbiont's original cell membrane. The outermost membrane is not connected to the endoplasmic reticulum. They contain a pyrenoid, and have triplet-stacked thylakoids. Starch is found outside the chloroplast. Peridinin chloroplasts also have DNA that is highly genome reduction and fragmented into many small circles. Most of the genome has migrated to the nucleus, and only critical photosynthesis-related genes remain in the chloroplast.
Most dinophyte chloroplasts contain form II RuBisCO, at least the photosynthetic pigments chlorophyll a, chlorophyll c2, beta-carotene, and at least one dinophyte-unique xanthophyll (peridinin, dinoxanthin, or diadinoxanthin), giving many a golden-brown color. All dinophytes store starch in their cytoplasm, and most have chloroplasts with thylakoids arranged in stacks of three.
Fucoxanthin-containing chloroplasts are characterized by having the pigment fucoxanthin (actually 19′-hexanoyloxy-fucoxanthin and/or 19′-butanoyloxy-fucoxanthin) and no peridinin. Fucoxanthin is also found in haptophyte chloroplasts, providing evidence of ancestry.
The diatom endosymbiont is bounded by a single membrane, inside it are chloroplasts with four membranes. Like the diatom endosymbiont's diatom ancestor, the chloroplasts have triplet thylakoids and .
In some of these genera, the diatom endosymbiont's chloroplasts aren't the only chloroplasts in the dinophyte. The original three-membraned peridinin chloroplast is still around, converted to an eyespot.
Chloroplast DNA is usually condensed into , which can contain multiple copies of the chloroplast genome. Many nucleoids can be found in each chloroplast. In primitive red algae, the chloroplast DNA nucleoids are clustered in the center of the chloroplast, while in green plants and green algae, the nucleoids are dispersed throughout the stroma. Chloroplast DNA is not associated with true , proteins that are used to pack DNA molecules tightly in eukaryote nuclei. Though in red algae, similar proteins tightly pack each chloroplast DNA ring in a nucleoid.
Many chloroplast genomes contain two , which separate a long single copy section (LSC) from a short single copy section (SSC). A given pair of inverted repeats are rarely identical, but they are always very similar to each other, apparently resulting from concerted evolution. The inverted repeats vary wildly in length, ranging from 4,000 to 25,000 long each and containing as few as four or as many as over 150 genes. The inverted repeat regions are highly conserved in land plants, and accumulate few mutations.
Similar inverted repeats exist in the genomes of cyanobacteria and the other two chloroplast lineages (glaucophyta and rhodophyceae), suggesting that they predate the chloroplast. Some chloroplast genomes have since lost or flipped the inverted repeats (making them ). It is possible that the inverted repeats help stabilize the rest of the chloroplast genome, as chloroplast genomes which have lost some of the inverted repeat segments tend to get rearranged more.
The mechanism for chloroplast DNA (cpDNA) replication has not been conclusively determined, but two main models have been proposed. Scientists have attempted to observe chloroplast replication via electron microscopy since the 1970s. The results of the microscopy experiments led to the idea that chloroplast DNA replicates using a double displacement loop (D-loop). As the D-loop moves through the circular DNA, it adopts a theta intermediary form, also known as a Cairns replication intermediate, and completes replication with a rolling circle mechanism. Transcription starts at specific points of origin. Multiple replication forks open up, allowing replication machinery to transcribe the DNA. As replication continues, the forks grow and eventually converge. The new cpDNA structures separate, creating daughter cpDNA chromosomes.
In addition to the early microscopy experiments, this model is also supported by the amounts of deamination seen in cpDNA. Deamination occurs when an amino group is lost and is a mutation that often results in base changes. When adenine is deaminated, it becomes hypoxanthine. Hypoxanthine can bind to cytosine, and when the XC base pair is replicated, it becomes a GC (thus, an A → G base change).
In cpDNA, there are several A → G deamination gradients. DNA becomes susceptible to deamination events when it is single stranded. When replication forks form, the strand not being copied is single stranded, and thus at risk for A → G deamination. Therefore, gradients in deamination indicate that replication forks were most likely present and the direction that they initially opened (the highest gradient is most likely nearest the start site because it was single stranded for the longest amount of time). This mechanism is still the leading theory today; however, a second theory suggests that most cpDNA is actually linear and replicates through homologous recombination. It further contends that only a minority of the genetic material is kept in circular chromosomes while the rest is in branched, linear, or other complex structures.
One of competing model for cpDNA replication asserts that most cpDNA is linear and participates in homologous recombination and replication structures similar to the linear and circular DNA structures of bacteriophage T4. It has been established that some plants have linear cpDNA, such as maize, and that more species still contain complex structures that scientists do not yet understand. When the original experiments on cpDNA were performed, scientists did notice linear structures; however, they attributed these linear forms to broken circles. If the branched and complex structures seen in cpDNA experiments are real and not artifacts of concatenated circular DNA or broken circles, then a D-loop mechanism of replication is insufficient to explain how those structures would replicate. At the same time, homologous recombination does not expand the multiple A --> G gradients seen in plastomes. Because of the failure to explain the deamination gradient as well as the numerous plant species that have been shown to have circular cpDNA, the predominant theory continues to hold that most cpDNA is circular and most likely replicates via a D loop mechanism.
Among land plants, the contents of the chloroplast genome are fairly similar.
Endosymbiotic gene transfer is how we know about the lost chloroplasts in many CASH lineages. Even if a chloroplast is eventually lost, the genes it donated to the former host's nucleus persist, providing evidence for the lost chloroplast's existence. For example, while diatoms (a heterokontophyte) now have a red algal derived chloroplast, the presence of many green algal genes in the diatom nucleus provide evidence that the diatom ancestor had a green algal derived chloroplast at some point, which was subsequently replaced by the red chloroplast.
In land plants, some 11–14% of the DNA in their nuclei can be traced back to the chloroplast, up to 18% in Arabidopsis, corresponding to about 4,500 protein-coding genes. There have been a few recent transfers of genes from the chloroplast DNA to the nuclear genome in land plants.
Of the approximately 3000 proteins found in chloroplasts, some 95% of them are encoded by nuclear genes. Many of the chloroplast's protein complexes consist of subunits from both the chloroplast genome and the host's nuclear genome. As a result, protein synthesis must be coordinated between the chloroplast and the nucleus. The chloroplast is mostly under nuclear control, though chloroplasts can also give out signals regulating gene expression in the nucleus, called retrograde signaling.
Recent research indicates that parts of the retrograde signaling network once considered characteristic for land plants emerged already in an algal progenitor, integrating into co-expressed cohorts of genes in the closest algal relatives of land plants.
Curiously, around half of the protein products of transferred genes aren't even targeted back to the chloroplast. Many became exaptations, taking on new functions like participating in cell division, protein routing, and even disease resistance. A few chloroplast genes found new homes in the mitochondrial genome—most became nonfunctional pseudogenes, though a few tRNA genes still work in the mitochondrion. Some transferred chloroplast DNA protein products get directed to the secretory pathway, though many secondary plastids are bounded by an outermost membrane derived from the host's cell membrane, and therefore topologically outside of the cell because to reach the chloroplast from the cytosol, the cell membrane must be crossed, which signifies entrance into the extracellular space. In those cases, chloroplast-targeted proteins do initially travel along the secretory pathway.
Because the cell acquiring a chloroplast already had Mitochondrion (and peroxisomes, and a cell membrane for secretion), the new chloroplast host had to develop a unique protein targeting system to avoid having chloroplast proteins being sent to the wrong organelle.
In most, but not all cases, nuclear-encoded chloroplast proteins are translated with a cleavable transit peptide that's added to the N-terminus of the protein precursor. Sometimes the transit sequence is found on the C-terminus of the protein, or within the functional part of the protein.
From here, chloroplast proteins bound for the stroma must pass through two protein complexes—the TOC complex, or translocon on the outer chloroplast membrane, and the TIC translocon, or translocon on the inner chloroplast membrane translocon. Chloroplast polypeptide chains probably often travel through the two complexes at the same time, but the TIC complex can also retrieve preproteins lost in the intermembrane space.
All chloroplasts have at least three membrane systems—the outer chloroplast membrane, the inner chloroplast membrane, and the thylakoid system. The two innermost cell membrane that surround all chloroplasts correspond to the outer and inner cell membrane of the ancestral cyanobacterium's gram negative cell wall, and not the phagosomal membrane from the host, which was probably lost. Chloroplasts that are the product of secondary endosymbiosis may have additional membranes surrounding these three. Inside the outer and inner chloroplast membranes is the chloroplast stroma, a semi-gel-like fluid that makes up much of a chloroplast's volume, and in which the thylakoid system floats.
There are some common misconceptions about the outer and inner chloroplast membranes. The fact that chloroplasts are surrounded by a double membrane is often cited as evidence that they are the descendants of endosymbiotic cyanobacteria. This is often interpreted as meaning the outer chloroplast membrane is the product of the host's cell membrane infolding to form a vesicle to surround the ancestral cyanobacterium—which is not true—both chloroplast membranes are homologous to the cyanobacterium's original double membranes.
The chloroplast double membrane is also often compared to the Mitochondrion double membrane. This is not a valid comparison—the inner mitochondria membrane is used to run proton pumps and carry out oxidative phosphorylation across to generate ATP energy. The only chloroplast structure that can be considered analogous to it is the internal thylakoid system. Even so, in terms of "in-out", the direction of chloroplast hydronium ion flow is in the opposite direction compared to oxidative phosphorylation in mitochondria.
The chloroplast membranes sometimes protrude out into the cytoplasm, forming a stromule, or stroma-containing tub ule. Stromules are very rare in chloroplasts, and are much more common in other plastids like chromoplasts and amyloplasts in petals and roots, respectively. They may exist to increase the chloroplast's surface area for cross-membrane transport, because they are often branched and tangled with the endoplasmic reticulum. When they were first observed in 1962, some plant biologists dismissed the structures as artifactual, claiming that stromules were just oddly shaped chloroplasts with constricted regions or dividing chloroplasts. However, there is a growing body of evidence that stromules are functional, integral features of plant cell plastids, not merely artifacts.
Glaucophyte algal chloroplasts have a peptidoglycan layer between the chloroplast membranes. It corresponds to the peptidoglycan cell wall of their cyanobacterial ancestors, which is located between their two cell membranes. These chloroplasts are called muroplasts (from Latin "mura", meaning "wall"). Other chloroplasts were assumed to have lost the cyanobacterial wall, leaving an intermembrane space between the two chloroplast envelope membranes, but has since been found also in moss, lycophytes and ferns. Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria
In addition to regulating the passage of materials, the inner chloroplast membrane is where , , and are synthesized.
Small subunit in several Chlorophyta and euglenid chloroplasts lack motifs for Shine-Dalgarno sequence recognition, which is considered essential for translation initiation in most chloroplasts and . Such loss is also rarely observed in other and prokaryotes. An additional 4.5S rRNA with homology to the 3' tail of 23S is found in "higher" plants.
Plastoglobuli contain both structural proteins and enzymes involved in lipid synthesis and metabolism. They contain many types of including plastoquinone, vitamin E, and chlorophylls.
Plastoglobuli were once thought to be free-floating in the stroma, but it is now thought that they are permanently attached either to a thylakoid or to another plastoglobulus attached to a thylakoid, a configuration that allows a plastoglobulus to exchange its contents with the thylakoid network. In normal green chloroplasts, the vast majority of plastoglobuli occur singularly, attached directly to their parent thylakoid. In old or stressed chloroplasts, plastoglobuli tend to occur in linked groups or chains, still always anchored to a thylakoid.
Plastoglobuli form when a bubble appears between the layers of the lipid bilayer of the thylakoid membrane, or bud from existing plastoglobuli—though they never detach and float off into the stroma. Practically all plastoglobuli form on or near the highly curved edges of the thylakoid disks or sheets. They are also more common on stromal thylakoids than on granum ones.
Starch granules appear and grow throughout the day, as the chloroplast synthesizes sugars, and are consumed at night to fuel respiration and continue sugar export into the phloem, though in mature chloroplasts, it is rare for a starch granule to be completely consumed or for a new granule to accumulate.
Starch granules vary in composition and location across different chloroplast lineages. In red algae, starch granules are found in the cytoplasm rather than in the chloroplast. In plants, mesophyll tissue chloroplasts, which do not synthesize sugars, lack starch granules.
Thylakoids (sometimes spelled thylakoïds), are small interconnected sacks which contain the membranes that the light reactions of photosynthesis take place on. The word thylakoid comes from the Greek word thylakos which means "sack".
Suspended within the chloroplast stroma is the thylakoid system, a highly dynamic collection of membranous sacks called where chlorophyll is found and the light reactions of photosynthesis happen. In most vascular plant chloroplasts, the thylakoids are arranged in stacks called grana, though in certain plant chloroplasts and some algal chloroplasts, the thylakoids are free floating.
The three-dimensional structure of the thylakoid membrane system has been disputed. Many models have been proposed, the most prevalent being the Helix model, in which granum stacks of thylakoids are wrapped by helical stromal thylakoids. Another model known as the 'bifurcation model', which was based on the first electron tomography study of plant thylakoid membranes, depicts the stromal membranes as wide lamellar sheets perpendicular to the grana columns which bifurcates into multiple parallel discs forming the granum-stroma assembly. The helical model was supported by several additional works, but ultimately it was determined in 2019 that features from both the helical and bifurcation models are consolidated by newly discovered left-handed helical membrane junctions. Likely for ease, the thylakoid system is still commonly depicted by older "hub and spoke" models where the grana are connected to each other by tubes of stromal thylakoids.
Grana consist of a stacks of flattened circular granal thylakoids that resemble pancakes. Each granum can contain anywhere from two to a hundred thylakoids, though grana with 10–20 thylakoids are most common. Wrapped around the grana are multiple parallel right-handed helical stromal thylakoids, also known as frets or lamellar thylakoids. The helices ascend at an angle of ~20°, connecting to each granal thylakoid at a bridge-like slit junction.
The stroma lamellae extend as large sheets perpendicular to the grana columns. These sheets are connected to the right-handed helices either directly or through bifurcations that form left-handed helical membrane surfaces. The left-handed helical surfaces have a similar tilt angle to the right-handed helices (~20°), but ¼ the pitch. Approximately 4 left-handed helical junctions are present per granum, resulting in a pitch-balanced array of right- and left-handed helical membrane surfaces of different radii and pitch that consolidate the network with minimal surface and bending energies. While different parts of the thylakoid system contain different membrane proteins, the thylakoid membranes are continuous and the thylakoid space they enclose form a single continuous labyrinth.
There are two types of thylakoids—granal thylakoids, which are arranged in grana, and stromal thylakoids, which are in contact with the stroma. Granal thylakoids are pancake-shaped circular disks about 300–600 nanometers in diameter. Stromal thylakoids are helicoid sheets that spiral around grana. The flat tops and bottoms of granal thylakoids contain only the relatively flat photosystem II protein complex. This allows them to stack tightly, forming grana with many layers of tightly appressed membrane, called granal membrane, increasing stability and surface area for light capture.
In contrast, photosystem I and ATP synthase are large protein complexes which jut out into the stroma. They can't fit in the appressed granal membranes, and so are found in the stromal thylakoid membrane—the edges of the granal thylakoid disks and the stromal thylakoids. These large protein complexes may act as spacers between the sheets of stromal thylakoids.
The number of thylakoids and the total thylakoid area of a chloroplast is influenced by light exposure. Shaded chloroplasts contain larger and more Thylakoid with more thylakoid membrane area than chloroplasts exposed to bright light, which have smaller and fewer grana and less thylakoid area. Thylakoid extent can change within minutes of light exposure or removal.
Chlorophyll b is an olive green pigment found only in the chloroplasts of , green algae, any secondary chloroplasts obtained through the secondary endosymbiosis of a green alga, and a few cyanobacteria. It is the chlorophylls a and b together that make most plant and green algal chloroplasts green.
Chlorophyll c is mainly found in secondary endosymbiotic chloroplasts that originated from a red alga, although it is not found in chloroplasts of red algae themselves. Chlorophyll c is also found in some green algae and cyanobacteria.
Chlorophylls chlorophyll d and chlorophyll f are pigments found only in some cyanobacteria.
Photosynthetic pigments. Presence of pigments across chloroplast groups and cyanobacteria. Colored cells represent pigment presence. Chl = chlorophyll | |||||||||
and | |||||||||
' and ' | |||||||||
' and ' | |||||||||
plants evolved a way to solve this—by spatially separating the light reactions and the Calvin cycle. The light reactions, which store light energy in ATP and [[NADPH]], are done in the [[mesophyll|mesophyll tissue]] cells of a leaf. The Calvin cycle, which uses the stored energy to make sugar using RuBisCO, is done in the bundle sheath cells, a layer of cells surrounding a vein in a [[leaf]].
As a result, chloroplasts in mesophyll cells and bundle sheath cells are specialized for each stage of photosynthesis. In mesophyll cells, chloroplasts are specialized for the light reactions, so they lack RuBisCO, and have normal Thylakoid and , which they use to make ATP and NADPH, as well as oxygen. They store in a four-carbon compound, which is why the process is called photosynthesis. The four-carbon compound is then transported to the bundle sheath chloroplasts, where it drops off and returns to the mesophyll. Bundle sheath chloroplasts do not carry out the light reactions, preventing oxygen from building up in them and disrupting RuBisCO activity. Because of this, they lack thylakoids organized into Thylakoid stacks—though bundle sheath chloroplasts still have free-floating thylakoids in the stroma where they still carry out cyclic electron flow, a light-driven method of synthesizing ATP to power the Calvin cycle without generating oxygen. They lack photosystem II, and only have photosystem I—the only protein complex needed for cyclic electron flow. Because the job of bundle sheath chloroplasts is to carry out the Calvin cycle and make sugar, they often contain large starch grains.
Both types of chloroplast contain large amounts of chloroplast peripheral reticulum, which they use to get more surface area to transport stuff in and out of them. Mesophyll chloroplasts have a little more peripheral reticulum than bundle sheath chloroplasts.
Plants have two main immune responses—the hypersensitive response, in which infected cells seal themselves off and undergo programmed cell death, and systemic acquired resistance, where infected cells release signals warning the rest of the plant of a pathogen's presence. Chloroplasts stimulate both responses by purposely damaging their photosynthetic system, producing reactive oxygen species. High levels of reactive oxygen species will cause the hypersensitive response. The reactive oxygen species also directly kill any pathogens within the cell. Lower levels of reactive oxygen species initiate systemic acquired resistance, triggering defense-molecule production in the rest of the plant.
In some plants, chloroplasts are known to move closer to the infection site and the Cell nucleus during an infection.
Chloroplasts can serve as cellular sensors. After detecting stress in a cell, which might be due to a pathogen, chloroplasts begin producing molecules like salicylic acid, jasmonic acid, nitric oxide and reactive oxygen species which can serve as defense-signals. As cellular signals, reactive oxygen species are unstable molecules, so they probably don't leave the chloroplast, but instead pass on their signal to an unknown second messenger molecule. All these molecules initiate retrograde signaling—signals from the chloroplast that regulate gene expression in the nucleus.
In addition to defense signaling, chloroplasts, with the help of the , help synthesize an important defense molecule, jasmonate. Chloroplasts synthesize all the in a plant cell—linoleic acid, a fatty acid, is a precursor to jasmonate.
Because NADP+ reduction removes electrons from the electron transport chains, they must be replaced—the job of photosystem II, which splits water molecules (H2O) to obtain the electrons from its hydrogen atoms.
While named "the dark reactions", in most plants, they take place in the light, since the dark reactions are dependent on the products of the light reactions.
Alternatively, glucose monomers in the chloroplast can be linked together to make starch, which accumulates into the starch grains found in the chloroplast. Under conditions such as high atmospheric CO2 concentrations, these starch grains may grow very large, distorting the grana and thylakoids. The starch granules displace the thylakoids, but leave them intact. Waterlogged can also cause starch buildup in the chloroplasts, possibly due to less sucrose being exported out of the chloroplast (or more accurately, the plant cell). This depletes a plant's free phosphate supply, which indirectly stimulates chloroplast starch synthesis. While linked to low photosynthesis rates, the starch grains themselves may not necessarily interfere significantly with the efficiency of photosynthesis, and might simply be a side effect of another photosynthesis-depressing factor.
CO2 in water can form carbonic acid, which can disturb the pH of isolated chloroplasts, interfering with photosynthesis, even though CO2 is used in photosynthesis. However, chloroplasts in living plant cells are not affected by this as much.
Chloroplasts can pump Potassium and H+ ions in and out of themselves using a poorly understood light-driven transport system.
In the presence of light, the pH of the thylakoid lumen can drop up to 1.5 pH units, while the pH of the stroma can rise by nearly one pH unit.
The biosynthesis of fatty acids from acetyl-CoA primarily requires two enzymes. Acetyl-CoA carboxylase creates malonyl-CoA, used in both the first step and the extension steps of synthesis. Fatty acid synthase (FAS) is a large complex of enzymes and cofactors including acyl carrier protein (ACP) which holds the acyl chain as it is synthesized. The initiation of synthesis begins with the condensation of malonyl-ACP with acetyl-CoA to produce ketobutyryl-ACP. 2 reductions involving the use of NADPH and one dehydration creates butyryl-ACP. Extension of the fatty acid comes from repeated cycles of malonyl-ACP condensation, reduction, and dehydration.
Other lipids are derived from the methyl-erythritol phosphate (MEP) pathway and consist of Gibberellin, sterols, abscisic acid, phytol, and innumerable secondary metabolites.
In some plants such as cacti, chloroplasts are found in the Plant stem,
In higher plants, chloroplast movement is run by phototropins, blue light photoreceptors also responsible for plant phototropism. In some algae, , , and , chloroplast movement is influenced by red light in addition to blue light, though very long red wavelengths inhibit movement rather than speeding it up. Blue light generally causes chloroplasts to seek shelter, while red light draws them out to maximize light absorption.
Studies of Vallisneria gigantea, an aquatic flowering plant, have shown that chloroplasts can get moving within five minutes of light exposure, though they don't initially show any net directionality. They may move along microfilament tracks, and the fact that the microfilament mesh changes shape to form a honeycomb structure surrounding the chloroplasts after they have moved suggests that microfilaments may help to anchor chloroplasts in place.
In shoots, proplastids from shoot apical meristems can gradually develop into chloroplasts in photosynthetic leaf tissues as the leaf matures, if exposed to the required light. This process involves invaginations of the inner plastid membrane, forming sheets of membrane that project into the internal stroma. These membrane sheets then fold to form and Thylakoid.
If angiosperm shoots are not exposed to the required light for chloroplast formation, proplastids may develop into an etioplast stage before becoming chloroplasts. An etioplast is a plastid that lacks chlorophyll, and has inner membrane invaginations that form a lattice of tubes in their stroma, called a prolamellar body. While etioplasts lack chlorophyll, they have a yellow chlorophyll precursor stocked. Within a few minutes of light exposure, the prolamellar body begins to reorganize into stacks of thylakoids, and chlorophyll starts to be produced. This process, where the etioplast becomes a chloroplast, takes several hours. Gymnosperms do not require light to form chloroplasts.
Light, however, does not guarantee that a proplastid will develop into a chloroplast. Whether a proplastid develops into a chloroplast some other kind of plastid is mostly controlled by the Cell nucleus and is largely influenced by the kind of cell it resides in.
In single-celled algae, chloroplast division is the only way new chloroplasts are formed. There is no proplastid differentiation—when an algal cell divides, its chloroplast divides along with it, and each daughter cell receives a mature chloroplast.
Almost all chloroplasts in a cell divide, rather than a small group of rapidly dividing chloroplasts. Chloroplasts have no definite S-phase—their DNA replication is not synchronized or limited to that of their host cells. Much of what we know about chloroplast division comes from studying organisms like Arabidopsis and the red alga Cyanidioschyzon merolæ.
The division process starts when the proteins FtsZ1 and FtsZ2 assemble into filaments, and with the help of a protein ARC6, form a structure called a Z-ring within the chloroplast's stroma. The Min system manages the placement of the Z-ring, ensuring that the chloroplast is cleaved more or less evenly. The protein MinD prevents FtsZ from linking up and forming filaments. Another protein ARC3 may also be involved, but it is not very well understood. These proteins are active at the poles of the chloroplast, preventing Z-ring formation there, but near the center of the chloroplast, MinE inhibits them, allowing the Z-ring to form.
Next, the two plastid-dividing rings, or PD rings form. The inner plastid-dividing ring is located in the inner side of the chloroplast's inner membrane, and is formed first. The outer plastid-dividing ring is found wrapped around the outer chloroplast membrane. It consists of filaments about 5 nanometers across, arranged in rows 6.4 nanometers apart, and shrinks to squeeze the chloroplast. This is when chloroplast constriction begins.
In a few species like Cyanidioschyzon merolæ, chloroplasts have a third plastid-dividing ring located in the chloroplast's intermembrane space.
Late into the constriction phase, dynamin proteins assemble around the outer plastid-dividing ring, helping provide force to squeeze the chloroplast. Meanwhile, the Z-ring and the inner plastid-dividing ring break down. During this stage, the many chloroplast DNA plasmids floating around in the stroma are partitioned and distributed to the two forming daughter chloroplasts.
Later, the dynamins migrate under the outer plastid dividing ring, into direct contact with the chloroplast's outer membrane, to cleave the chloroplast in two daughter chloroplasts.
A remnant of the outer plastid dividing ring remains floating between the two daughter chloroplasts, and a remnant of the dynamin ring remains attached to one of the daughter chloroplasts.
Of the five or six rings involved in chloroplast division, only the outer plastid-dividing ring is present for the entire constriction and division phase—while the Z-ring forms first, constriction does not begin until the outer plastid-dividing ring forms.
Light has been shown to be a requirement for chloroplast division. Chloroplasts can grow and progress through some of the constriction stages under poor quality green light, but are slow to complete division—they require exposure to bright white light to complete division. Spinach leaves grown under green light have been observed to contain many large dumbbell-shaped chloroplasts. Exposure to white light can stimulate these chloroplasts to divide and reduce the population of dumbbell-shaped chloroplasts.
Many mechanisms prevent biparental chloroplast DNA inheritance, including selective destruction of chloroplasts or their genes within the gamete or zygote, and chloroplasts from one parent being excluded from the embryo. Parental chloroplasts can be sorted so that only one type is present in each offspring.
, such as , mostly pass on chloroplasts paternally, while often inherit chloroplasts maternally. Flowering plants were once thought to only inherit chloroplasts maternally. However, there are now many documented cases of angiosperms inheriting chloroplasts paternally.
Flowering plant, which pass on chloroplasts maternally, have many ways to prevent paternal inheritance. Most of them produce sperm cells that do not contain any plastids. There are many other documented mechanisms that prevent paternal inheritance in these flowering plants, such as different rates of chloroplast replication within the embryo.
Among angiosperms, paternal chloroplast inheritance is observed more often in hybrids than in offspring from parents of the same species. This suggests that incompatible hybrid genes might interfere with the mechanisms that prevent paternal inheritance.
|
|