Abiogenesis is the natural process by which life arises from non-living matter, such as simple . The prevailing scientific hypothesis is that the transition from non-living to organism on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of . The transition from non-life to life has never been observed experimentally, but many proposals have been made for different stages of the process.
The study of abiogenesis aims to determine how pre-life chemical reactions gave rise to life under conditions strikingly different from those on Earth today. It primarily uses tools from biology and chemistry, with more recent approaches attempting a synthesis of many sciences. Life functions through the specialized chemistry of carbon and water, and builds largely upon four key families of chemicals: for cell membranes, such as sugars, for protein metabolism, and nucleic acid DNA and RNA for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and interactions of these classes of molecules.
Many approaches to abiogenesis investigate how self-replicating molecules, or their components, came into existence. Researchers generally think that current life descends from an RNA world, although other self-replicating and self-catalyzing molecules may have preceded RNA. Other approaches (Proto-metabolism) focus on understanding how catalysis in chemical systems on the early Earth might have provided the precursor molecules necessary for self-replication. The classic 1952 Miller–Urey experiment demonstrated that most amino acids, the chemical constituents of , can be synthesized from inorganic compounds under conditions intended to replicate those of the early Earth. External sources of energy may have triggered these reactions, including lightning, radiation, atmospheric entries of micro-meteorites, and implosion of bubbles in sea and ocean waves. More recent research has found amino acids in meteorites, comets, asteroids, and star-forming regions of space.
While the last universal common ancestor of all modern organisms (LUCA) is thought to have existed long after the origin of life, investigations into LUCA can guide research into early universal characteristics. A genomics approach has sought to characterize LUCA by identifying the genes shared by Archaea and Bacteria, members of the two major branches of life (with included in the archaean branch in the two-domain system). It appears there are 60 proteins common to all life and 355 prokaryotic genes that trace to LUCA; their functions imply that the LUCA was anaerobic with the Wood–Ljungdahl pathway, deriving energy by chemiosmosis, and maintaining its hereditary material with DNA, the genetic code, and . Although the LUCA lived over 4 billion years ago (4 billion years), researchers believe it was far from the first form of life. Most evidence suggests that earlier cells might have had a leaky membrane and been powered by a naturally occurring proton gradient near a deep-sea white smoker hydrothermal vent; however, other evidence suggests instead that life may have originated inside the continental crust or in water at Earth's surface.
Earth remains the only place in the universe known to harbor life. Geochemical and Stromatolite from the Earth informs most studies of abiogenesis. The Earth was formed at 4.54 Gya, and the earliest evidence of life on Earth dates from at least 3.8 Gya from Western Australia. Some studies have suggested that fossil micro-organisms may have lived within hydrothermal vent precipitates dated 3.77 to 4.28 Gya from Quebec, soon after ocean formation 4.4 Gya during the Hadean.
The challenge for abiogenesis (origin of life)Compare: researchers is to explain how such a complex and tightly interlinked system could develop by evolutionary steps, as at first sight all its parts are necessary to enable it to function. For example, a cell, whether the LUCA or in a modern organism, copies its DNA with the DNA polymerase enzyme, which is itself produced by translating the DNA polymerase gene in the DNA. Neither the enzyme nor the DNA can be produced without the other. The likely answer to this challenge is that the evolutionary process could have involved molecular self-replication, self-assembly such as of , and autocatalysis via RNA in an RNA world environment. Nonetheless, the transition of non-life to life has never been observed experimentally, nor has there been a satisfactory chemical explanation.
The preconditions to the development of a living cell like the LUCA are known, though disputed in detail: a habitable world is formed with a supply of minerals and liquid water. Prebiotic synthesis creates a range of simple organic compounds, which are assembled into polymers such as proteins and RNA. On the other side, the process after the LUCA is readily understood: biological evolution caused the development of a wide range of species with varied forms and biochemical capabilities. However, the derivation of the LUCA from simple components is far from understood.
Although Earth remains the only place where life is known, the science of astrobiology seeks evidence of life on other planets. The 2015 NASA strategy on the origin of life aimed to solve the puzzle by identifying interactions, intermediary structures and functions, energy sources, and environmental factors that contributed to evolvable macromolecular systems, and mapping the chemical landscape of potential primordial informational . The advent of such polymers was most likely a critical step in prebiotic chemical evolution. Those polymers derived, in turn, from simple such as , , and , likely formed by reactions in the environment. A successful theory of the origin of life must explain how all these chemicals came into being.
Alexander Oparin in 1924 and J. B. S. Haldane in 1929 proposed that the earliest cells slowly self-organized from a primordial soup, the Primordial soup. Haldane suggested that the Earth's prebiotic oceans consisted of a "hot dilute soup" in which organic compounds could have formed. J. D. Bernal showed that such mechanisms could form most of the necessary molecules for life from inorganic precursors. In 1967, he suggested three "stages": the origin of biological ; the origin of biological ; and the evolution from molecules to cells.
Condensation to form liquid oceans is theorised to have occurred as early as the Moon-forming impact. This scenario is supported by the dating of 4.404 Gya zircon crystals with high δ18O values from metamorphosed quartzite of Mount Narryer in Western Australia. The Hadean atmosphere has been characterized as a "gigantic, productive outdoor chemical laboratory," similar to volcanic gases today which still support some abiotic chemistry. Despite the likely increased volcanism from early plate tectonics, the Earth may have been a predominantly water world between 4.4 and 4.3 Gya. It is debated whether crust was exposed above this ocean. Immediately after the Moon-forming impact, Earth likely had little if any continental crust, a turbulent atmosphere, and a hydrosphere subject to intense ultraviolet light from a T Tauri stage Sun. It was also affected by Cosmic ray, and continued asteroid and comet impacts.
The Late Heavy Bombardment hypothesis posits that a period of intense impact occurred at 4.1 to 3.8 Gya during the Hadean and early Archean eons. Originally it was thought that the Late Heavy Bombardment was a single cataclysmic impact event occurring at 3.9 Gya; this would have had the potential to sterilise Earth by volatilising liquid oceans and blocking sunlight needed for photosynthesis, delaying the earliest possible emergence of life. More recent research questioned the intensity of the Late Heavy Bombardment and its potential for sterilisation. If it was not one giant impact but a period of raised impact rate, it would have had much less destructive power. The 3.9 Gya date arose from dating of Apollo program collected mostly near the Mare Imbrium, biasing the age of recorded impacts. Impact modelling of the lunar surface reveals that rather than a cataclysmic event at 3.9 Gya, multiple small-scale, short-lived periods of bombardment likely occurred. Terrestrial data backs this idea by showing multiple periods of ejecta in the rock record both before and after the 3.9 Gya marker, suggesting that the early Earth was subject to continuous impacts with less impact on extinction.
If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from late impacts and the then high levels of ultraviolet radiation from the sun. Geothermically heated oceanic crust could have yielded far more organic compounds through deep hydrothermal vents than the Miller–Urey experiments indicated. The available energy is maximized at 100–150 °C, the temperatures at which Hyperthermophile bacteria and Thermoacidophile archaea live.
Biogenic graphite has been found in 3.7 Gya metasedimentary rocks from southwestern Greenland and in microbial mat fossils from 3.49 Gya in the Pilbara craton region of Western Australia. Evidence of early life in rocks from Akilia Island, near the Isua supracrustal belt in southwestern Greenland, dating to 3.7 Gya, have shown biogenic . In other parts of the Isua supracrustal belt, graphite inclusions trapped within garnet crystals are connected to the other elements of life: oxygen, nitrogen, and possibly phosphorus in the form of phosphate, providing further evidence for life 3.7 Gya. In the Pilbara region of Western Australia, compelling evidence of early life was found in pyrite-bearing sandstone in a fossilized beach, with rounded tubular cells that oxidized sulfur by photosynthesis in the absence of oxygen. Carbon isotope ratios on graphite inclusions from the Jack Hills zircons suggest that life could have existed on Earth from 4.1 Gya.
The Pilbara region of Western Australia contains the Dresser Formation with rocks 3.48 Gya, including layered structures called . Their modern counterparts are created by photosynthetic micro-organisms including cyanobacteria. These lie within undeformed hydrothermal-sedimentary strata; their texture indicates a biogenic origin. Parts of the Dresser formation preserve on land, but other regions seem to have been shallow seas. A molecular clock analysis suggests the LUCA emerged prior to 3.9 Gya.
A star, HH 46-IR, resembling the sun early in its life, is surrounded by a disk of material which contains molecules including cyanide compounds, , and carbon monoxide. PAHs in the interstellar medium can be transformed through hydrogenation, oxygenate, and hydroxylation to more complex organic compounds used in living cells.
DNA and RNA components including uracil, cytosine and thymine can be synthesized under outer space conditions, using starting chemicals such as pyrimidine found in meteorites. Pyrimidine may have been formed in red giant stars or in interstellar dust and gas clouds. All four RNA-bases may be synthesized from formamide in high-energy density events like extraterrestrial impacts. Several ribonucleotides for RNA formation have been synthesized in a laboratory environment which replicates Prebiotic world via Autocatalysis.
Other pathways for synthesizing bases from inorganic materials have been reported. Freezing temperatures assist the synthesis of purines, by concentrating key precursors such as HCN. However, while adenine and guanine require freezing conditions, cytosine and uracil may require boiling temperatures. Seven amino acids and eleven types of nucleobases formed in ice when ammonia and cyanide were left in a freezer for 25 years. S- (alternative nucleobases), pyrimidines including cytosine and uracil, and adenine can be synthesized by subjecting a urea solution to freeze-thaw cycles under a reductive atmosphere with spark discharges. The unusual speed of these low-temperature reactions is due to Eutectic system, which crowds impurities in microscopic pockets of liquid within the ice.
Experimental evidence for the formation of peptides in uniquely concentrated environments is bolstered by work suggesting that wet-dry cycles and the presence of specific salts can greatly increase spontaneous condensation of glycine into poly-glycine chains. Other work suggests that while mineral surfaces, such as those of pyrite, calcite, and rutile catalyze peptide condensation, they also catalyze their hydrolysis. The authors suggest that additional chemical activation or coupling would be necessary to produce peptides at sufficient concentrations. Thus, mineral surface catalysis, while important, is not sufficient alone for peptide synthesis.
Many prebiotically plausible condensing/activating agents have been identified, including the following: cyanamide, dicyanamide, dicyandiamide, diaminomaleonitrile, urea, trimetaphosphate, NaCl, CuCl2, (Ni,Fe)S, CO, carbonyl sulfide (COS), carbon disulfide (CS2), SO2, and diammonium phosphate (DAP).
A 2024 experiment used a sapphire substrate with a web of thin cracks under a heat flow, mimicking deep-ocean vents, to concentrate prebiotically-relevant building blocks from a dilute mixture by up to three orders of magnitude. This could help to create biopolymers such as peptides. A similar role has been suggested for clays.
The prebiotic synthesis of peptides from simpler molecules such as CO, NH3 and C, skipping the step of amino acid formation, is also very efficient.
A protocell is a self-organized, self-ordered, spherical collection of lipids proposed as a stepping-stone to life. A functional protocell has (as of 2014) not yet been achieved in a laboratory setting. Self-assembled vesicles are essential components of primitive cells. The theory of classical irreversible thermodynamics treats self-assembly under a generalized chemical potential within the framework of dissipative systems. The second law of thermodynamics requires that overall entropy increases, yet life is distinguished by its great degree of organization. Therefore, a boundary is needed to separate ordered metabolism from chaotic non-living matter.
Irene Chen and Jack W. Szostak suggest that elementary protocells can give rise to cellular behaviors including primitive forms of differential reproduction, competition, and energy storage. Competition for membrane molecules would favor stabilized membranes, suggesting a selective advantage for cross-linked fatty acids and even modern . Such micro-encapsulation would allow for metabolism within the membrane and the exchange of small molecules, while retaining large biomolecules inside. Such a membrane is needed for a cell to create its own electrochemical gradient. Fatty acid vesicles in conditions relevant to alkaline hydrothermal vents can be stabilized by isoprenoids which are synthesized by the formose reaction; the advantages and disadvantages of isoprenoids incorporated within the lipid bilayer in different microenvironments might have led to the divergence of the membranes of archaea and bacteria.
Vesicles can undergo an evolutionary process under pressure cycling conditions. Simulating the systemic environment in tectonic fault zones within the Earth's crust, pressure cycling leads to the periodic formation of vesicles. Under the same conditions, random peptide chains are formed and selected for their ability to integrate into the vesicle membrane. A further selection of the vesicles for stability potentially leads to functional peptide structures, increasing the survival rate of the vesicles.
Multiple sources of energy were available for chemical reactions on the early Earth. Heat from geothermal processes is a standard energy source for chemistry. Other examples include sunlight, lightning, atmospheric entries of micro-meteorites, and implosion of bubbles in sea and ocean waves. This has been confirmed by experiments and simulations. Unfavorable reactions can be driven by highly favorable ones, as in the case of iron-sulfur chemistry. For example, this was probably important for carbon fixation. Carbon fixation by reaction of CO2 with H2S via iron-sulfur chemistry is favorable, and occurs at neutral pH and 100 °C. Iron-sulfur surfaces, which are abundant near hydrothermal vents, can drive the production of small amounts of amino acids and other biomolecules.
RNA is central to the translation process. Small RNAs can catalyze all the chemical groups and information transfers required for life. RNA both expresses and maintains genetic information in modern organisms; and the chemical components of RNA are easily synthesized under conditions that approximate the early Earth. The structure of the ribosome has been called the "smoking gun", with a central core of RNA and no amino acid side chains within 18 Angstrom of the active site that catalyzes peptide bond formation.
The concept of the RNA world was proposed in 1962 by Alexander Rich, and the term was coined by Walter Gilbert in 1986. Initially it was hard to explain abiotic synthesis of the nucleotides cytosine and uracil. Subsequent research has shown possible routes of synthesis; for example, formamide produces all four and other biological molecules when warmed in the presence of terrestrial minerals.
RNA replicase can function as both code and catalyst for further RNA replication, i.e. it can be autocatalytic. Jack Szostak has shown that certain catalytic RNAs can link smaller RNA sequences together, enabling self-replication. RNA replication systems, which include two ribozymes that catalyze each other's synthesis, had a doubling time of about one hour, and were subject to natural selection. If such conditions were present on early Earth, then natural selection would favor the proliferation of such autocatalytic sets, to which further functionalities could be added. Self-assembly of RNA may occur spontaneously in hydrothermal vents. A preliminary form of tRNA could have assembled into such a replicator molecule. When such an RNA molecule began to replicate, it may it may have been capable of the three mechanisms of Darwinian selection: heritability, variation of type, and differential reproductive output. The fitness of such an RNA replicator (its per capita rate of increase) would likely have been a function of its intrinsic adaptive capabilities determined by its nucleotide sequence, and the availability of resources.Bernstein H, Byerly HC, Hopf FA, Michod RA, Vemulapalli GK. (1983) The Darwinian Dynamic. Quarterly Review of Biology 56, 185-187. JSTOR 2828805.Michod, R. E. (2006). Darwininian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press.
Possible precursors to protein synthesis include the synthesis of short peptide cofactors or the self-catalysing duplication of RNA. It is likely that the ancestral ribosome was composed entirely of RNA, although some roles have since been taken over by proteins. Major remaining questions on this topic include identifying the selective force for the evolution of the ribosome and determining how the genetic code arose.
Eugene Koonin has argued that "no compelling scenarios currently exist for the origin of replication and translation, the key processes that together comprise the core of biological systems and the apparent pre-requisite of biological evolution. The RNA World concept might offer the best chance for the resolution of this conundrum but so far cannot adequately account for the emergence of an efficient RNA replicase or the translation system."
In 2016, a set of 355 genes likely present in the LUCA was identified. A total of 6.1 million prokaryotic genes from Bacteria and Archaea were sequenced, identifying 355 protein clusters from among 286,514 protein clusters that were probably common to the LUCA. The results suggest that the LUCA was anaerobic with a Wood–Ljungdahl (reductive Acetyl-CoA) pathway, nitrogen- and carbon-fixing, thermophilic. Its cofactors suggest dependence upon an environment rich in hydrogen, carbon dioxide, iron, and . Its genetic material was probably DNA, requiring the 4-nucleotide genetic code, messenger RNA, transfer RNA, and ribosomes to translate the code into proteins such as enzymes. LUCA likely inhabited an anaerobic hydrothermal vent setting in a geochemically active environment. It was evidently already a complex organism, and must have had precursors; it was not the first living thing. The physiology of LUCA has been in dispute. Previous research identified 60 proteins common to all life.
Leslie Orgel argued that early translation machinery for the genetic code would be susceptible to error catastrophe. Geoffrey Hoffmann however showed that such machinery can be stable in function against "Orgel's paradox". Metabolic reactions that have also been inferred in LUCA are the incomplete reverse Krebs cycle, gluconeogenesis, the pentose phosphate pathway, glycolysis, reductive amination, and transamination.
These form where hydrogen-rich fluids emerge from below the sea floor, as a result of serpentinite of ultra-mafic olivine with seawater and a pH interface with carbon dioxide-rich ocean water. The vents form a sustained chemical energy source derived from redox reactions, in which electron donors (molecular hydrogen) react with electron acceptors (carbon dioxide); see iron–sulfur world theory. These are exothermic reactions.
These two gradients together can be expressed as an electrochemical gradient, providing energy for abiogenic synthesis. The proton motive force measures the potential energy stored as proton and voltage gradients across a membrane (differences in proton concentration and electrical potential).
The surfaces of mineral particles inside deep-ocean hydrothermal vents have catalytic properties similar to those of enzymes, and can create simple organic molecules, such as methanol (CH3OH) and formic acid, acetic acid, and out of the dissolved CO2 in the water, if driven by an applied voltage or by reaction with H2 or H2S.
Starting in 1985, researchers proposed that life arose at hydrothermal vents, that spontaneous chemistry in the Earth's crust driven by rock–water interactions at disequilibrium thermodynamically underpinned life's origin, and that the founding lineages of the archaea and bacteria were H2-dependent autotrophs that used CO2 as their terminal acceptor in energy metabolism. In 2016, Martin suggested that the LUCA "may have depended heavily on the geothermal energy of the vent to survive". Pores at deep sea hydrothermal vents are suggested to have been occupied by membrane-bound compartments which promoted biochemical reactions. Metabolic intermediates in the Krebs cycle, gluconeogenesis, amino acid bio-synthetic pathways, glycolysis, the pentose phosphate pathway, and including sugars like ribose, and lipid precursors can occur non-enzymatically at conditions relevant to deep-sea alkaline hydrothermal vents.
If the deep marine hydrothermal setting was the site, then abiogenesis could have happened as early as . If life evolved in the ocean at depths of more than ten meters, it would have been shielded both from impacts and the then high levels of solar ultraviolet radiation. The available energy in hydrothermal vents is maximized at 100–150 °C, the temperatures at which Hyperthermophile bacteria and Thermoacidophile archaea live. Arguments against a hydrothermal origin of life state that hyperthermophily was a result of convergent evolution in bacteria and archaea, and that a Mesophile environment would have been more likely. This hypothesis, suggested in 1999 by Galtier, was proposed one year before the discovery of the Lost City Hydrothermal Field, where white-smoker hydrothermal vents average ≈45–90 °C.
Other contra-arguments include the inability to concentrate prebiotic materials, due to strong dilution by seawater. This open system cycles compounds through vent minerals, leaving little residence time to accumulate. All modern cells rely on phosphates and potassium for nucleotide backbone and protein formation respectively, making it likely that the first life forms shared these functions. These elements were not available in high quantities in the Archaean oceans, as both primarily come from the weathering of continental rocks on land, far from vents. Submarine hydrothermal vents are not conducive to condensation reactions needed for polymerisation of macromolecules.
An older argument was that key polymers were encapsulated in vesicles after condensation, which supposedly would not happen in saltwater. However, while salinity inhibits vesicle formation from low-diversity mixtures of fatty acids, vesicle formation from a broader, more realistic mix of fatty-acid and 1-alkanol species is more resilient.
Mulkidjanian and co-authors argue that marine environments did not provide the ionic balance and composition universally found in cells, or the ions required by essential proteins and ribozymes, especially with respect to high K+/Na+ ratio, Mn2+, Zn2+ and phosphate concentrations. They argue that the only environments that do this are hot springs similar to ones at Kamchatka. Mineral deposits in these environments under an anoxic atmosphere would have suitable pH, contain precipitates of photocatalytic sulfide minerals that absorb harmful ultraviolet radiation, and have wet-dry cycles that concentrate substrate solutions enough for spontaneous formation of biopolymers created both by chemical reactions in the hydrothermal environment, and by exposure to UV light during transport from vents to adjacent pools. The hypothesized pre-biotic environments are similar to hydrothermal vents, with additional components that help explain peculiarities of the LUCA.
A phylogenomic and geochemical analysis of proteins plausibly traced to the LUCA shows that the ionic composition of its intracellular fluid is identical to that of hot springs. The LUCA likely was dependent upon synthesized organic matter for its growth. Experiments show that RNA-like polymers can be synthesized in wet-dry cycling and UV light exposure. These polymers were encapsulated in vesicles after condensation. Potential sources of organics at hot springs might have been transport by interplanetary dust particles, extraterrestrial projectiles, or atmospheric or geochemical synthesis. Hot springs could have been abundant in volcanic landmasses during the Hadean.
Strong evidence for mesophily from biomolecular studies includes Galtier's GC-content nucleotide thermometer. G+C are more abundant in thermophiles due to the added stability of an additional hydrogen bond not present between A+T nucleotides. Ribosomal RNA sequencing on a diverse range of modern lifeforms shows that LUCA's reconstructed G+C content was likely representative of moderate temperatures.
It is possible that the diversity of thermophiles today is a product of convergent evolution and horizontal gene transfer rather than an inherited trait from LUCA. The reverse gyrase topoisomerase is found exclusively in thermophiles and hyperthermophiles as it allows for coiling of DNA. This enzyme requires the complex molecule ATP synthase to function. If an origin of life is hypothesised to involve a simple organism that had not yet evolved a membrane, let alone ATP, this would make the existence of reverse gyrase improbable. Moreover, phylogenetic studies show that reverse gyrase had an archaeal origin, and transferred to bacteria by horizontal gene transfer, implying it was not present in the LUCA.
Ice melts that form from ice sheets or glacier melts create freshwater pools, another niche capable of wet-dry cycles. While surface pools would be exposed to intense UV radiation, bodies of water within and under ice would be shielded, while remaining connected to exposed areas through ice cracks. Impact melting would allow freshwater and meteoritic input, creating prebiotic components. Near-seawater levels of sodium chloride destabilize fatty acid membrane self-assembly, making freshwater settings appealing for early membranous life.
Icy environments would trade the faster reaction rates that occur in warm environments for increased stability and accumulation of larger polymers. Experiments simulating Europa-like conditions of ≈20 °C have synthesised amino acids and adenine, showing that Miller-Urey type syntheses can occur at low temperatures. In an RNA world, the ribozyme would have had even more functions than in a later DNA-RNA-protein-world. For RNA to function, it must be able to fold, a process hindered by temperatures above 30 °C. While RNA folding in Psychrophile organisms is slower, so is hydrolysis, so folding is more successful. Shorter nucleotides would not suffer from higher temperatures.
An especially interesting section of the tectonic fault zones is located at a depth of approximately 1000 m. For the carbon dioxide part of the bulk solvent, it provides temperature and pressure conditions near the phase transition point between the supercritical and the gaseous state. This leads to a natural accumulation zone for Lipophilicity that dissolve well in supercritical CO2, but not in its gaseous state, leading to their local precipitation. Periodic pressure variations such as caused by Geyser or Tidal force result in periodic phase transitions, keeping the local reaction environment in a constant non-equilibrium state. In presence of Amphiphile (such as the long chain amines and fatty acids mentioned above), subsequent generations of vesicles are being formed that are constantly and efficiently being selected for their stability.
Once established, chirality would be selected for. A small bias (enantiomeric excess) in the population can be amplified into a large one by asymmetric autocatalysis, such as in the Soai reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalyzing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other.
Homochirality may have started in outer space: on the Murchison meteorite, the left-handed amino acid alanine is more than twice as frequent as its right-handed D form, and glutamic acid is more than three times as abundant as its D counterpart.
In a 2010 experiment by Robert Root-Bernstein, "two D-RNA-oligonucleotides having inverse base sequences (D-CGUA and D-AUGC) and their corresponding L-RNA-oligonucleotides (L-CGUA and L-AUGC) were synthesized and their affinity determined for Gly and eleven pairs of L- and D-amino acids". The results suggest that homochirality, including codon directionality, might have "emerged as a function of the origin of the genetic code".
|
|