A teleprinter ( teletypewriter, teletype or TTY) is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations.
Initially, from 1887 at the earliest, teleprinters were used in telegraphy. Electrical telegraphy had been developed decades earlier in the late 1830s and 1840s, then using simpler Morse key equipment and telegraph operators. The introduction of teleprinters automated much of this work and eventually largely replaced skilled labour operators versed in Morse code with typists and machines communicating faster via Baudot code.
With the development of early computers in the 1950s, teleprinters were adapted to allow typed data to be sent to a computer, and responses printed. Some teleprinter models could also be used to create punched tape for data storage (either from typed input or from data received from a remote source) and to read back such tape for local printing or transmission. A teleprinter attached to a modem could also communicate through . This latter configuration was often used to connect teleprinters to remote computers, particularly in time-sharing environments.
Teleprinters have largely been replaced by fully electronic computer terminals which typically have a computer monitor instead of a printer (though the term "TTY" is still occasionally used to refer to them, such as in Unix systems). Teleprinters are still widely used in the aviation industry (see AFTN and airline teletype system), and variants called Telecommunications Devices for the Deaf (TDDs) are used by the hearing loss for typed communications over ordinary telephone lines.
There were a number of parallel developments on both sides of the Atlantic Ocean. In 1835 Samuel Morse devised a recording telegraph, and Morse code was born. Morse's instrument used a current to displace the armature of an electromagnet, which moved a marker, therefore recording the breaks in the current. Cooke & Wheatstone received a British patent covering telegraphy in 1837 and a second one in 1840 which described a type-printing telegraph with steel type fixed at the tips of petals of a rotating brass daisy-wheel, struck by an "electric hammer" to print Roman letters through carbon paper onto a moving paper tape. In 1841 Alexander Bain devised an electromagnetic printing telegraph machine. It used pulses of electricity created by rotating a dial over contact points to release and stop a type-wheel turned by weight-driven clockwork; a second clockwork mechanism rotated a drum covered with a sheet of paper and moved it slowly upwards so that the type-wheel printed its signals in a spiral. The critical issue was to have the sending and receiving elements working synchronously. Bain attempted to achieve this using centrifugal governors to closely regulate the speed of the clockwork. It was patented, along with other devices, on April 21, 1841.
By 1846, the Samuel Morse telegraph service was operational between Washington, D.C., and New York. Royal Earl House patented his printing telegraph that same year. He linked two 28-key piano-style keyboards by wire. Each piano key represented a letter of the alphabet and when pressed caused the corresponding letter to print at the receiving end. A "shift" key gave each main key two optional values. A 56-character typewheel at the sending end was synchronised to coincide with a similar wheel at the receiving end. If the key corresponding to a particular character was pressed at the home station, it actuated the typewheel at the distant station just as the same character moved into the printing position, in a way similar to the (much later) daisy wheel printer. It was thus an example of a synchronous data transmission system. House's equipment could transmit around 40 instantly readable words per minute, but was difficult to manufacture in bulk. The printer could copy and print out up to 2,000 words per hour. This invention was first put in operation and exhibited at the Mechanics Institute in New York in 1844.
Landline teleprinter operations began in 1849, when a circuit was put in service between Philadelphia and New York City.
In 1855, David Edward Hughes introduced an improved machine built on the work of Royal Earl House. In less than two years, a number of small telegraph companies, including Western Union in early stages of development, united to form one large corporation – Western Union Telegraph Co. – to carry on the business of telegraphy on the Hughes system.
In France, Émile Baudot designed in 1874 a system using a five-unit code, which began to be used extensively in that country from 1877. The British Post Office adopted the Baudot system for use on a simplex circuit between London and Paris in 1897, and subsequently made considerable use of duplex Baudot systems on their Inland Telegraph Services.
During 1901, Baudot's code was modified by Donald Murray (1865–1945, originally from New Zealand), prompted by his development of a typewriter-like keyboard. The Murray system employed an intermediate step, a keyboard perforator, which allowed an operator to punch a paper tape, and a tape transmitter for sending the message from the punched tape. At the receiving end of the line, a printing mechanism would print on a paper tape, and/or a reperforator could be used to make a perforated copy of the message. As there was no longer a direct correlation between the operator's hand movement and the bits transmitted, there was no concern about arranging the code to minimize operator fatigue, and instead Murray designed the code to minimize wear on the machinery, assigning the code combinations with the fewest punched holes to the most frequently used characters. The Murray code also introduced what became known as "format effectors" or "control characters" – the Carriage return (Carriage Return) and Newline (Line Feed) codes. A few of Baudot's codes moved to the positions where they have stayed ever since: the NULL or BLANK and the DEL code. NULL/BLANK was used as an idle code for when no messages were being sent.
In the United States in 1902, electrical engineer Frank Pearne approached Joy Morton, head of Morton Salt, seeking a sponsor for research into the practicalities of developing a printing telegraph system. Joy Morton needed to determine whether this was worthwhile and so consulted mechanical engineer Charles L. Krum, who was vice president of the Western Cold Storage Company. Krum was interested in helping Pearne, so space was set up in a laboratory in the attic of Western Cold Storage. Frank Pearne lost interest in the project after a year and left to get involved in teaching. Krum was prepared to continue Pearne’s work, and in August, 1903 a patent was filed for a 'typebar page printer'. In 1904, Krum filed a patent for a 'type wheel printing telegraph machine' which was issued in August, 1907. In 1906 Charles Krum's son, Howard Krum, joined his father in this work. It was Howard who developed and patented the start-stop synchronizing method for code telegraph systems, which made possible the practical teleprinter.
In 1908, a working teleprinter was produced by the Morkrum Company (formed between Joy Morton and Charles Krum), called the Morkrum Printing Telegraph, which was field tested with the Alton Railroad. In 1910, the Morkrum Company designed and installed the first commercial teletypewriter system on Postal Telegraph Company lines between Boston and New York City using the "Blue Code Version" of the Morkrum Printing Telegraph.
In 1916, Edward Kleinschmidt filed a patent application for a typebar page printer. In 1919, shortly after the Morkrum company obtained their patent for a start-stop synchronizing method for code telegraph systems, which made possible the practical teleprinter, Kleinschmidt filed an application titled "Method of and Apparatus for Operating Printing Telegraphs" which included an improved start-stop method. The basic start-stop procedure, however, is much older than the Kleinschmidt and Morkrum inventions. It was already proposed by D'Arlincourt in 1870.
Instead of wasting time and money in patent disputes on the start-stop method, Kleinschmidt and the Morkrum Company decided to merge and form the Morkrum-Kleinschmidt Company in 1924. The new company combined the best features of both their machines into a new typewheel printer for which Kleinschmidt, Howard Krum, and Sterling Morton jointly obtained a patent.
In 1924 Britain's Creed & Company, founded by Frederick G. Creed, entered the teleprinter field with their Model 1P, a page printer, which was soon superseded by the improved Model 2P. In 1925 Creed acquired the patents for Donald Murray's Murray code, a rationalised Baudot code. The Model 3 tape printer, Creed’s first combined start-stop machine, was introduced in 1927 for the Post Office telegram service. This machine printed received messages directly on to gummed paper tape at a rate of 65 words per minute. Creed created his first keyboard perforator, which used compressed air to punch the holes. He also created a reperforator (receiving perforator) and a printer. The reperforator punched incoming Morse signals on to paper tape and the printer decoded this tape to produce alphanumeric characters on plain paper. This was the origin of the Creed High Speed Automatic Printing System, which could run at an unprecedented 200 words per minute. His system was adopted by the Daily Mail for daily transmission of the newspaper's contents. The Creed Model 7 page printing teleprinter was introduced in 1931 and was used for the inland Telex service. It worked at a speed of 50 baud, about 66 words a minute, using a code based on the Murray code.
A teleprinter system was installed in the Bureau of Lighthouses, Airways Division, Flight Service Station Airway Radio Stations system in 1928, carrying administrative messages, flight information and weather reports. By 1938, the teleprinter network, handling weather traffic, extended over 20,000 miles, covering all 48 states except Maine, New Hampshire, and South Dakota.
There were at least five major types of teleprinter networks:
Before the computer revolution (and data processing performance improvements thanks to Moore's law) made it possible to securely encrypt voice and , teleprinters were long used in combination with electromechanical or electronic cryptographic devices to provide secure communication channels. Being limited to text only was an acceptable trade-off for security.
Mark and space are terms describing in teleprinter circuits. The native mode of communication for a teleprinter is a simple series DC circuit that is interrupted, much as a rotary dial interrupts a telephone signal. The marking condition is when the circuit is closed (current is flowing), the spacing condition is when the circuit is open (no current is flowing). The "idle" condition of the circuit is a continuous marking state, with the start of a character signalled by a "start bit", which is always a space. Following the start bit, the character is represented by a fixed number of bits, such as 5 bits in the ITA2 code, each either a mark or a space to denote the specific character or machine function. After the character's bits, the sending machine sends one or more stop bits. The stop bits are marking, so as to be distinct from the subsequent start bit. If the sender has nothing more to send, the line simply remains in the marking state (as if a continuing series of stop bits) until a later space denotes the start of the next character. The time between characters need not be an integral multiple of a bit time, but it must be at least the minimum number of stop bits required by the receiving machine.
When the line is broken, the continuous spacing (open circuit, no current flowing) causes a receiving teleprinter to cycle continuously, even in the absence of stop bits. It prints nothing because the characters received are all zeros, the ITA2 blank (or ASCII) null character.
Teleprinter circuits were generally leased from a communications common carrier and consisted of ordinary that extended from the teleprinter located at the customer location to the common carrier central office. These teleprinter circuits were connected to switching equipment at the central office for Telex and TWX service. Private line teleprinter circuits were not directly connected to switching equipment. Instead, these private line circuits were connected to and configured to provide point to point or point to multipoint service. More than two teleprinters could be connected to the same wire circuit by means of a current loop.
Earlier teleprinters had three rows of keys and only supported upper case letters. They used the 5 bit ITA2 code and generally worked at 60 to 100 words per minute. Later teleprinters, specifically the Teletype Model 33, used ASCII code, an innovation that came into widespread use in the 1960s as computers became more widely available.
"Speed", intended to be roughly comparable to words per minute, is the standard term introduced by Western Union for a mechanical teleprinter data transmission rate using the 5-bit ITA2 code that was popular in the 1940s and several decades thereafter. Such a machine would send 1 start bit, 5 data bits, and 1.42 stop bits. This unusual stop bit time is actually a rest period to allow the mechanical printing mechanism to synchronize in the event that a garbled signal is received. This is true especially on high frequency radio circuits, where selective fading is present. Selective fading causes the mark signal amplitude to be randomly different from the space signal amplitude. Selective fading, or Rayleigh fading can cause two carriers to randomly and independently fade to different depths. Since modern computer equipment cannot easily generate 1.42 bits for the stop period, common practice is to either approximate this with 1.5 bits, or to send 2.0 bits while accepting 1.0 bits receiving.
For example, a "60 speed" machine is geared at 45.5 baud (22.0 millisecond per bit), a "66 speed" machine is geared at 50.0 baud (20.0 ms per bit), a "75 speed" machine is geared at 56.9 baud (17.5 ms per bit), a "100 speed" machine is geared at 74.2 baud (13.5 ms per bit), and a "133 speed" machine is geared at 100.0 baud (10.0 ms per bit). 60 speed became the de facto standard for amateur radio radioteletype operation because of the widespread availability of equipment at that speed and the U.S. Federal Communications Commission (FCC) restrictions to only 60 speed from 1953 to 1972. Telex, news agency wires and similar services commonly used 66 speed services. There was some migration to 75 and 100 speed as more reliable devices were introduced. However, the limitations of HF transmission such as excessive error rates due to multipath distortion and the nature of ionospheric propagation kept many users at 60 and 66 speed. Most audio recordings in existence today are of teleprinters operating at 60 words per minute, and mostly of the Teletype Model 15.
Another measure of the speed of a teletypewriter was in total "operations per minute (OPM)". For example, 60 speed was usually 368 OPM, 66 speed was 404 OPM, 75 speed was 460 OPM, and 100 speed was 600 OPM. Western Union Telexes were usually set at 390 OPM, with 7.0 total bits instead of the customary 7.42 bits.
Both wire-service and private teleprinters had bells to signal important incoming messages and could ring 24/7 while the power was turned on. For example, ringing 4 bells on UPI wire-service machines meant an "Urgent" message; 5 bells was a "Bulletin"; and 10 bells was a FLASH, used only for very important news.
The teleprinter circuit was often linked to a 5-bit punched tape punch (or "reperforator") and reader, allowing messages received to be resent on another circuit. Complex military and commercial communications networks were built using this technology. Message centers had rows of teleprinters and large racks for paper tapes awaiting transmission. Skilled operators could read the priority code from the hole pattern and might even feed a "FLASH PRIORITY" tape into a reader while it was still coming out of the punch. Routine traffic often had to wait hours for relay. Many teleprinters had built-in paper tape readers and punches, allowing messages to be saved in machine-readable form and edited off-line.
Communication by radio, known as radioteletype or RTTY (pronounced ritty), was also common, especially among military users. Ships, command posts (mobile, stationary, and even airborne) and logistics units took advantage of the ability of operators to send reliable and accurate information with a minimum of training. Amateur radio operators continue to use this mode of communication today, though most use computer-interface sound generators, rather than legacy hardware teleprinter equipment. Numerous modes are in use within the "ham radio" community, from the original ITA2 format to more modern, faster modes, which include error-checking of characters.
Kleinschmidt machines, with the military as their primary customer, used standard military designations for their machines. The teleprinter was identified with designations such as a TT-4/FG, while communication "sets" to which a teleprinter might be a part generally used the standard Army/Navy designation system such as AN/FGC-25. This includes Kleinschmidt teleprinter TT-117/FG and tape reperforator TT-179/FG.
Teletype machines tended to be large, heavy, and extremely robust, capable of running non-stop for months at a time if properly lubricated. The Model 15 stands out as one of a few machines that remained in production for many years. It was introduced in 1930 and remained in production until 1963, a total of 33 years of continuous production. Very few complex machines can match that record. The production run was stretched somewhat by World War II—the Model 28 was scheduled to replace the Model 15 in the mid-1940s, but Teletype built so many factories to produce the Model 15 during World War II, it was more economical to continue mass production of the Model 15. The Model 15, in its receive only, no keyboard, version was the classic "news Teletype" for decades.
Several different high-speed printers like the "Ink-tronic" etc.
The TTS produces aligned text, taking into consideration character widths and column width, or line length.
A Model 20 Teletype machine with a paper tape punch ("reperforator") was installed at subscriber newspaper sites. Originally these machines would simply punch paper tapes and these tapes could be read by a tape reader attached to a "Teletypesetter operating unit" installed on a Linotype machine. The "operating unit" was essentially a tape reader which actuated a mechanical box, which in turn operated the Linotype's keyboard and other controls, in response to the codes read from the tape, thus creating type for printing in newspapers and magazines.
This allowed higher production rates for the Linotype, and was used both locally, where the tape was first punched and then fed to the machine, as well as remotely, using tape transmitters and receivers.
Remote use played an essential role for distributing identical content, such as syndicated columns, News agency, classified advertising, and more, to different publications across wide geographical areas.
In later years the incoming 6-bit current loop signal carrying the TTS code was connected to a minicomputer or mainframe for storage, editing, and eventual feed to a phototypesetting machine.
Users typed commands after a prompt character was printed. Printing was unidirectional; if the user wanted to delete what had been typed, further characters were printed to indicate that previous text had been cancelled. When video displays first became available the user interface was initially exactly the same as for an electromechanical printer; expensive and scarce video terminals could be used interchangeably with teleprinters. This was the origin of the text terminal and the command-line interface.
Punched tape was sometimes used to prepare input for the computer session off line and to capture computer output. The popular Teletype Model 33 used 7-bit ASCII code (with an eighth parity bit) instead of Baudot. The common modem communications settings, Start/Stop Bits and Parity, stem from the Teletype era.
In early operating systems such as Digital's RT-11, serial communication lines were often connected to teleprinters and were given device names starting with . This and similar conventions were adopted by many other operating systems. Unix and Unix-like use the prefix , for example , or (for pseudo-tty), such as , but some of them (e.g. Solaris & recent Linux) have replaced pty files by a pts folder (where "pt" stands for "pseudoterminal" instead). In many computing contexts, "TTY" has become the name for any text terminal, such as an external system console device, a user dialing into the system on a modem on a serial port device, a printing or graphical computer terminal on a computer's serial port or the RS-232 port on a USB-to-RS-232 converter attached to a computer's USB port, or even a terminal emulator application in the window system using a pseudoterminal device.
Teleprinters were also used to record fault printout and other information in some TXE telephone exchanges.
In the 1980s, packet radio became the most common form of digital communications used in amateur radio. Soon, advanced multimode electronic interfaces such as the AEA PK-232 were developed, which could send and receive not only packet, but various other modulation types including baudot code. This made it possible for a home or laptop computer to replace teleprinters, saving money, complexity, space and the massive amount of paper which mechanical machines used.
Ways in which teleprinters were used
Teleprinter operation
Control characters
Answer back mechanism
Manufacturers
Creed & Company
Gretag
Kleinschmidt Labs
Morkrum
Olivetti
Siemens & Halske
Teletype Corporation
Texas Instruments
Telex
Teletypesetter
Teleprinters in computing
Obsolescence of teleprinters
See also
Further reading
External links
Patents
|
|