Wood is a structural tissue/material found as xylem in the Plant stem and roots of and other . It is an natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin that resists compression. Wood is sometimes defined as only the secondary xylem in the stems of trees, or more broadly to include the same type of tissue elsewhere, such as in the roots of trees or shrubs. In a living tree, it performs a mechanical-support function, enabling woody plants to grow large or to stand up by themselves. It also conveys water and among the leaf, other growing tissues, and the roots. Wood may also refer to other plant materials with comparable properties, and to material engineered from wood, woodchips, or .
Wood has been used for thousands of years for fuel, as a construction material, for making and , furniture and paper. More recently it emerged as a feedstock for the production of purified cellulose and its derivatives, such as cellophane and cellulose acetate.
As of 2020, the growing stock of worldwide was about 557 billion cubic meters.FAO. 2020. Global Forest Resources Assessment 2020: Main report . Rome. As an abundant, carbon-neutral renewable resource, woody materials have been of intense interest as a source of renewable energy. In 2008, approximately 3.97 billion cubic meters of wood were harvested. Dominant uses were for furniture and building construction.Horst H. Nimz, Uwe Schmitt, Eckart Schwab, Otto Wittmann, Franz Wolf "Wood" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim.
Wood is scientifically studied and researched through the discipline of wood science, which was initiated since the beginning of the 20th century.
Wood can be dated by carbon dating and in some species by dendrochronology to determine when a wooden object was created.
People have used wood for thousands of years for many purposes, including as a fuel or as a construction material for making , , , furniture, packaging, , and paper. Known using wood date back ten thousand years. Buildings like the longhouses in Neolithic Europe were made primarily of wood.
Recent use of wood has been enhanced by the addition of steel and bronze into construction.
The year-to-year variation in tree-ring widths and isotopic abundances gives clues to the prevailing climate at the time a tree was cut.
Where the differences between the seasons are distinct, e.g. New Zealand, growth can occur in a discrete annual or seasonal pattern, leading to ; these can usually be most clearly seen on the end of a log, but are also visible on the other surfaces. If the distinctiveness between seasons is annual (as is the case in equatorial regions, e.g. Singapore), these growth rings are referred to as annual rings. Where there is little seasonal difference growth rings are likely to be indistinct or absent. If the bark of the tree has been removed in a particular area, the rings will likely be deformed as the plant overgrows the scar.
If there are differences within a growth ring, then the part of a growth ring nearest the center of the tree, and formed early in the growing season when growth is rapid, is usually composed of wider elements. It is usually lighter in color than that near the outer portion of the ring, and is known as earlywood or springwood. The outer portion formed later in the season is then known as the latewood or summerwood. Wood growth and structure www.farmforestline.com.au There are major differences, depending on the kind of wood. If a tree grows all its life in the open and the conditions of soil and site remain unchanged, it will make its most rapid growth in youth, and gradually decline. The annual rings of growth are for many years quite wide, but later they become narrower and narrower. Since each succeeding ring is laid down on the outside of the wood previously formed, it follows that unless a tree materially increases its production of wood from year to year, the rings must necessarily become thinner as the trunk gets wider. As a tree reaches maturity its crown becomes more open and the annual wood production is lessened, thereby reducing still more the width of the growth rings. In the case of forest-grown trees so much depends upon the competition of the trees in their struggle for light and nourishment that periods of rapid and slow growth may alternate. Some trees, such as southern , maintain the same width of ring for hundreds of years. On the whole, as a tree gets larger in diameter the width of the growth rings decreases.
In the tree a knot is either the base of a side branch or a dormant bud. A knot (when the base of a side branch) is conical in shape (hence the roughly circular cross-section) with the inner tip at the point in stem diameter at which the plant's vascular cambium was located when the branch formed as a bud.
In grading lumber and structural timber, knots are classified according to their form, size, soundness, and the firmness with which they are held in place. This firmness is affected by, among other factors, the length of time for which the branch was dead while the attaching stem continued to grow.
Knots do not necessarily influence the stiffness of structural timber; this will depend on the size and location. Stiffness and elastic strength are more dependent upon the sound wood than upon localized defects. The breaking strength is very susceptible to defects. Sound knots do not weaken wood when subject to compression parallel to the grain.
In some decorative applications, wood with knots may be desirable to add visual interest. In applications where wood is painted, such as skirting boards, fascia boards, door frames and furniture, resins present in the timber may continue to 'bleed' through to the surface of a knot for months or even years after manufacture and show as a yellow or brownish stain. A knot primer paint or solution (knotting), correctly applied during preparation, may do much to reduce this problem but it is difficult to control completely, especially when using mass-produced kiln-dried timber stocks.
The term heartwood derives solely from its position and not from any vital importance to the tree. This is evidenced by the fact that a tree can thrive with its heart completely decayed. Some species begin to form heartwood very early in life, so having only a thin layer of live sapwood, while in others the change comes slowly. Thin sapwood is characteristic of such species as chestnut, black locust, mulberry, osage-orange, and sassafras, while in maple, ash tree, hickory, Celtis, beech, and pine, thick sapwood is the rule. Some others never form heartwood.
Heartwood is often visually distinct from the living sapwood and can be distinguished in a cross-section where the boundary will tend to follow the growth rings. For example, it is sometimes much darker. Other processes such as decay or insect invasion can also discolor wood, even in woody plants that do not form heartwood, which may lead to confusion.
Sapwood (or alburnum) is the younger, outermost wood; in the growing tree it is living wood,Capon, Brian (2005), Botany for Gardeners (2nd ed.), Portland, OR: Timber Publishing, p. 65 and its principal functions are to conduct water from the to the leaf and to store up and give back according to the season the reserves prepared in the leaves. By the time they become competent to conduct water, all xylem tracheids and vessels have lost their cytoplasm and the cells are therefore functionally dead. All wood in a tree is first formed as sapwood. The more leaves a tree bears and the more vigorous its growth, the larger the volume of sapwood required. Hence trees making rapid growth in the open have thicker sapwood for their size than trees of the same species growing in dense forests. Sometimes trees (of species that do form heartwood) grown in the open may become of considerable size, or more in diameter, before any heartwood begins to form, for example, in second growth hickory, or open-grown .
No definite relation exists between the annual rings of growth and the amount of sapwood. Within the same species the cross-sectional area of the sapwood is very roughly proportional to the size of the crown of the tree. If the rings are narrow, more of them are required than where they are wide. As the tree gets larger, the sapwood must necessarily become thinner or increase materially in volume. Sapwood is relatively thicker in the upper portion of the trunk of a tree than near the base, because the age and the diameter of the upper sections are less.
When a tree is very young it is covered with limbs almost, if not entirely, to the ground, but as it grows older some or all of them will eventually die and are either broken off or fall off. Subsequent growth of wood may completely conceal the stubs which will remain as knots. No matter how smooth and clear a log is on the outside, it is more or less knotty near the middle. Consequently, the sapwood of an old tree, and particularly of a forest-grown tree, will be freer from knots than the inner heartwood. Since in most uses of wood, knots are defects that weaken the timber and interfere with its ease of working and other properties, it follows that a given piece of sapwood, because of its position in the tree, may well be stronger than a piece of heartwood from the same tree.
Different pieces of wood cut from a large tree may differ decidedly, particularly if the tree is big and mature. In some trees, the wood laid on late in the life of a tree is softer, lighter, weaker, and more even textured than that produced earlier, but in other trees, the reverse applies. This may or may not correspond to heartwood and sapwood. In a large log the sapwood, because of the time in the life of the tree when it was grown, may be inferior in hardness, strength, and toughness to equally sound heartwood from the same log. In a smaller tree, the reverse may be true.
Some experiments on very resinous longleaf pine specimens indicate an increase in strength, due to the resin which increases the strength when dry. Such resin-saturated heartwood is called "fat lighter". Structures built of fat lighter are almost impervious to rot and , and very flammable. of old longleaf pines are often dug, split into small pieces and sold as kindling for fires. Stumps thus dug may actually remain a century or more since being cut. Spruce impregnated with crude resin and dried is also greatly increased in strength thereby.
Since the latewood of a growth ring is usually darker in color than the earlywood, this fact may be used in visually judging the density, and therefore the hardness and strength of the material. This is particularly the case with coniferous woods. In ring-porous woods the vessels of the early wood often appear on a finished surface as darker than the denser latewood, though on cross sections of heartwood the reverse is commonly true. Otherwise the color of wood is no indication of strength.
Abnormal discoloration of wood often denotes a diseased condition, indicating unsoundness. The black check in western Tsuga is the result of insect attacks. The reddish-brown streaks so common in hickory and certain other woods are mostly the result of injury by birds. The discoloration is merely an indication of an injury, and in all probability does not of itself affect the properties of the wood. Certain rot-producing fungi impart to wood characteristic colors which thus become symptomatic of weakness. Ordinary sap-staining is due to fungal growth, but does not necessarily produce a weakening effect.
The general effect of the water content upon the wood substance is to render it softer and more pliable. A similar effect occurs in the softening action of water on rawhide, paper, or cloth. Within certain limits, the greater the water content, the greater its softening effect. The moisture in wood can be measured by several different .
Wood drying produces a decided increase in the strength of wood, particularly in small specimens. An extreme example is the case of a completely dry spruce block 5 cm in section, which will sustain a permanent load four times as great as a green (undried) block of the same size will.
The greatest strength increase due to drying is in the ultimate crushing strength, and strength at elastic limit in endwise compression; these are followed by the modulus of rupture, and stress at elastic limit in cross-bending, while the elastic modulus is least affected.
In coniferous or softwood species the wood cells are mostly of one kind, , and as a result the material is much more uniform in structure than that of most . There are no vessels ("pores") in coniferous wood such as one sees so prominently in oak and ash, for example.
The structure of hardwoods is more complex. The water conducting capability is mostly taken care of by vessel element: in some cases (oak, chestnut, ash) these are quite large and distinct, in others (Aesculus, Populus, willow) too small to be seen without a hand lens. In discussing such woods it is customary to divide them into two large classes, ring-porous and diffuse-porous.
In ring-porous species, such as ash, black locust, catalpa, chestnut, elm, hickory, mulberry, and oak, the larger vessels or pores (as cross sections of vessels are called) are localized in the part of the growth ring formed in spring, thus forming a region of more or less open and porous tissue. The rest of the ring, produced in summer, is made up of smaller vessels and a much greater proportion of wood fibers. These fibers are the elements which give strength and toughness to wood, while the vessels are a source of weakness.
In diffuse-porous woods the pores are evenly sized so that the water conducting capability is scattered throughout the growth ring instead of being collected in a band or row. Examples of this kind of wood are Alnus, Tilia, birch, buckeye, maple, willow, and the Populus species such as aspen, cottonwood and poplar. Some species, such as Juglans nigra and Prunus pumila, are on the border between the two classes, forming an intermediate group.
If a heavy piece of pine is compared with a lightweight piece it will be seen at once that the heavier one contains a larger proportion of latewood than the other, and is therefore showing more clearly demarcated growth rings. In white pines there is not much contrast between the different parts of the ring, and as a result the wood is very uniform in texture and is easy to work. In hard pines, on the other hand, the latewood is very dense and is deep-colored, presenting a very decided contrast to the soft, straw-colored earlywood.
It is not only the proportion of latewood, but also its quality, that counts. In specimens that show a very large proportion of latewood it may be noticeably more porous and weigh considerably less than the latewood in pieces that contain less latewood. One can judge comparative density, and therefore to some extent strength, by visual inspection.
No satisfactory explanation can as yet be given for the exact mechanisms determining the formation of earlywood and latewood. Several factors may be involved. In conifers, at least, rate of growth alone does not determine the proportion of the two portions of the ring, for in some cases the wood of slow growth is very hard and heavy, while in others the opposite is true. The quality of the site where the tree grows undoubtedly affects the character of the wood formed, though it is not possible to formulate a rule governing it. In general, where strength or ease of working is essential, woods of moderate to slow growth should be chosen.
In the case of the ring-porous hardwoods, there seems to exist a pretty definite relation between the rate of growth of timber and its properties. This may be briefly summed up in the general statement that the more rapid the growth or the wider the rings of growth, the heavier, harder, stronger, and stiffer the wood. This, it must be remembered, applies only to ring-porous woods such as oak, ash, hickory, and others of the same group, and is, of course, subject to some exceptions and limitations.
In ring-porous woods of good growth, it is usually the latewood in which the thick-walled, strength-giving fibers are most abundant. As the breadth of ring diminishes, this latewood is reduced so that very slow growth produces comparatively light, porous wood composed of thin-walled vessels and wood parenchyma. In good oak, these large vessels of the earlywood occupy from six to ten percent of the volume of the log, while in inferior material they may make up 25% or more. The latewood of good oak is dark colored and firm, and consists mostly of thick-walled fibers which form one-half or more of the wood. In inferior oak, this latewood is much reduced both in quantity and quality. Such variation is very largely the result of rate of growth.
Wide-ringed wood is often called "second-growth", because the growth of the young timber in open stands after the old trees have been removed is more rapid than in trees in a closed forest, and in the manufacture of articles where strength is an important consideration such "second-growth" hardwood material is preferred. This is particularly the case in the choice of hickory for handles and . Here not only strength, but toughness and resilience are important.
The results of a series of tests on hickory by the U.S. Forest Service show that:
The effect of rate of growth on the qualities of chestnut wood is summarized by the same authority as follows:
In diffuse-porous woods, as has been stated, the vessels or pores are even-sized, so that the water conducting capability is scattered throughout the ring instead of collected in the earlywood. The effect of rate of growth is, therefore, not the same as in the ring-porous woods, approaching more nearly the conditions in the conifers. In general, it may be stated that such woods of medium growth afford stronger material than when very rapidly or very slowly grown. In many uses of wood, total strength is not the main consideration. If ease of working is prized, wood should be chosen with regard to its uniformity of texture and straightness of grain, which will in most cases occur when there is little contrast between the latewood of one season's growth and the earlywood of the next.
The U.S. Forest Products Laboratory lists a variety of ways to define specific gravity (G) and density (ρ) for wood:
G0 | Ovendry | Ovendry |
Gb (basic) | Ovendry | Green |
G12 | Ovendry | 12% MC |
Gx | Ovendry | x% MC |
ρ0 | Ovendry | Ovendry |
ρ12 | 12% MC | 12% MC |
ρx | x% MC | x% MC |
Age, diameter, height, radial (trunk) growth, geographical location, site and growing conditions, silviculture treatment, and seed source all to some degree influence wood density. Variation is to be expected. Within an individual tree, the variation in wood density is often as great as or even greater than that between different trees (Timell 1986). Variation of specific gravity within the bole of a tree can occur in either the horizontal or vertical direction.
Because the specific gravity as defined above uses an unrealistic condition, woodworkers tend to use the "average dried weight", which is a density based on mass at 12% moisture content and volume at the same (ρ12). This condition occurs when the wood is at equilibrium moisture content with air at about 65% relative humidity and temperature at 30 °C (86 °F). This density is expressed in units of kg/m3 or lbs/ft3. If you know the specific gravity at 12% MC, G12 (from the Wood Handbook), then multiply by 1120 to get the average dried weight at 12% MC, ρ12, in kg/m3. For example, if G12 is 0.40, then average dried weight is ρ12 = 0.40 * 1120 = 448 kg/m3. You can also find values for dried weight in two other FPL publications, Hardwoods of North America and Softwoods of North America.
Red Alder | Alnus rubra | Green | 370 | 20.4 | 45 |
Red Alder | Alnus rubra | 12.00% | 410 | 40.1 | 68 |
Black Ash | Fraxinus nigra | Green | 450 | 15.9 | 41 |
Black Ash | Fraxinus nigra | 12.00% | 490 | 41.2 | 87 |
Blue Ash | Fraxinus quadrangulata | Green | 530 | 24.8 | 66 |
Blue Ash | Fraxinus quadrangulata | 12.00% | 580 | 48.1 | 95 |
Green Ash | Fraxinus pennsylvanica | Green | 530 | 29 | 66 |
Green Ash | Fraxinus pennsylvanica | 12.00% | 560 | 48.8 | 97 |
Oregon Ash | Fraxinus latifolia | Green | 500 | 24.2 | 52 |
Oregon Ash | Fraxinus latifolia | 12.00% | 550 | 41.6 | 88 |
White Ash | Fraxinus americana | Green | 550 | 27.5 | 66 |
White Ash | Fraxinus americana | 12.00% | 600 | 51.1 | 103 |
Bigtooth Aspen | Populus grandidentata | Green | 360 | 17.2 | 37 |
Bigtooth Aspen | Populus grandidentata | 12.00% | 390 | 36.5 | 63 |
Quaking Aspen | Populus tremuloides | Green | 350 | 14.8 | 35 |
Quaking Aspen | Populus tremuloides | 12.00% | 380 | 29.3 | 58 |
American Basswood | Tilia americana | Green | 320 | 15.3 | 34 |
American Basswood | Tilia americana | 12.00% | 370 | 32.6 | 60 |
American Beech | Fagus grandifolia | Green | 560 | 24.5 | 59 |
American Beech | Fagus grandifolia | 12.00% | 640 | 50.3 | 103 |
Paper Birch | Betula papyrifera | Green | 480 | 16.3 | 44 |
Paper Birch | Betula papyrifera | 12.00% | 550 | 39.2 | 85 |
Sweet Birch | Betula lenta | Green | 600 | 25.8 | 65 |
Sweet Birch | Betula lenta | 12.00% | 650 | 58.9 | 117 |
Yellow Birch | Betula alleghaniensis | Green | 550 | 23.3 | 57 |
Yellow Birch | Betula alleghaniensis | 12.00% | 620 | 56.3 | 114 |
Butternut | Juglans cinerea | Green | 360 | 16.7 | 37 |
Butternut | Juglans cinerea | 12.00% | 380 | 36.2 | 56 |
Black Cherry | Prunus serotina | Green | 470 | 24.4 | 55 |
Blach Cherry | Prunus serotina | 12.00% | 500 | 49 | 85 |
American Chestnut | Castanea dentata | Green | 400 | 17 | 39 |
American Chestnut | Castanea dentata | 12.00% | 430 | 36.7 | 59 |
Balsam Poplar Cottonwood | Populus balsamifera | Green | 310 | 11.7 | 27 |
Balsam Poplar Cottonwood | Populus balsamifera | 12.00% | 340 | 27.7 | 47 |
Black Cottonwood | Populus trichocarpa | Green | 310 | 15.2 | 34 |
Black Cottonwood | Populus trichocarpa | 12.00% | 350 | 31 | 59 |
Eastern Cottonwood | Populus deltoides | Green | 370 | 15.7 | 37 |
Eastern Cottonwood | Populus deltoides | 12.00% | 400 | 33.9 | 59 |
American Elm | Ulmus americana | Green | 460 | 20.1 | 50 |
American Elm | Ulmus americana | 12.00% | 500 | 38.1 | 81 |
Rock Elm | Ulmus thomasii | Green | 570 | 26.1 | 66 |
Rock Elm | Ulmus thomasii | 12.00% | 630 | 48.6 | 102 |
Slippery Elm | Ulmus rubra | Green | 480 | 22.9 | 55 |
Slippery Elm | Ulmus rubra | 12.00% | 530 | 43.9 | 90 |
Hackberry | Celtis occidentalis | Green | 490 | 18.3 | 45 |
Hackberry | Celtis occidentalis | 12.00% | 530 | 37.5 | 76 |
Bitternut Hickory | Carya cordiformis | Green | 600 | 31.5 | 71 |
Bitternut Hickory | Carya cordiformis | 12.00% | 660 | 62.3 | 118 |
Nutmeg Hickory | Carya myristiciformis | Green | 560 | 27.4 | 63 |
Nutmeg Hickory | Carya myristiciformis | 12.00% | 600 | 47.6 | 114 |
Pecan Hickory | Carya illinoinensis | Green | 600 | 27.5 | 68 |
Pecan Hickory | Carya illinoinensis | 12.00% | 660 | 54.1 | 94 |
Water Hickory | Carya aquatica | Green | 610 | 32.1 | 74 |
Water Hickory | Carya aquatica | 12.00% | 620 | 59.3 | 123 |
Mockernut Hickory | Carya tomentosa | Green | 640 | 30.9 | 77 |
Mockernut Hickory | Carya tomentosa | 12.00% | 720 | 61.6 | 132 |
Pignut Hickory | Carya glabra | Green | 660 | 33.2 | 81 |
Pignut Hickory | Carya glabra | 12.00% | 750 | 63.4 | 139 |
Shagbark Hickory | Carya ovata | Green | 640 | 31.6 | 76 |
Shagbark Hickory | Carya ovata | 12.00% | 720 | 63.5 | 139 |
Shellbark Hickory | Carya laciniosa | Green | 620 | 27 | 72 |
Shellbark Hickory | Carya laciniosa | 12.00% | 690 | 55.2 | 125 |
Honeylocust | Gleditsia triacanthos | Green | 600 | 30.5 | 70 |
Honeylocust | Gleditsia triacanthos | 12.00% | 600 | 51.7 | 101 |
Black Locust | Robinia pseudoacacia | Green | 660 | 46.9 | 95 |
Black Locust | Robinia pseudoacacia | 12.00% | 690 | 70.2 | 134 |
Cucumber Tree Magnolia | Magnolia acuminata | Green | 440 | 21.6 | 51 |
Cucumber Tree Magnolia | Magnolia acuminata | 12.00% | 480 | 43.5 | 85 |
Southern Magnolia | Magnolia grandiflora | Green | 460 | 18.6 | 47 |
Southern Magnolia | Magnolia grandiflora | 12.00% | 500 | 37.6 | 77 |
Bigleaf Maple | Acer macrophyllum | Green | 440 | 22.3 | 51 |
Bigleaf Maple | Acer macrophyllum | 12.00% | 480 | 41 | 74 |
Black Maple | Acer nigrum | Green | 520 | 22.5 | 54 |
Black Maple | Acer nigrum | 12.00% | 570 | 46.1 | 92 |
Red Maple | Acer rubrum | Green | 490 | 22.6 | 53 |
Red Maple | Acer rubrum | 12.00% | 540 | 45.1 | 92 |
Silver Maple | Acer saccharinum | Green | 440 | 17.2 | 40 |
Silver Maple | Acer saccharinum | 12.00% | 470 | 36 | 61 |
Sugar Maple | Acer saccharum | Green | 560 | 27.7 | 65 |
Sugar Maple | Acer saccharum | 12.00% | 630 | 54 | 109 |
Black Red Oak | Quercus velutina | Green | 560 | 23.9 | 57 |
Black Red Oak | Quercus velutina | 12.00% | 610 | 45 | 96 |
Cherrybark Red Oak | Quercus pagoda | Green | 610 | 31.9 | 74 |
Cherrybark Red Oak | Quercus pagoda | 12.00% | 680 | 60.3 | 125 |
Laurel Red Oak | Quercus hemisphaerica | Green | 560 | 21.9 | 54 |
Laurel Red Oak | Quercus hemisphaerica | 12.00% | 630 | 48.1 | 87 |
Northern Red Oak | Quercus rubra | Green | 560 | 23.7 | 57 |
Northern Red Oak | Quercus rubra | 12.00% | 630 | 46.6 | 99 |
Pin Red Oak | Quercus palustris | Green | 580 | 25.4 | 57 |
Pin Red Oak | Quercus palustris | 12.00% | 630 | 47 | 97 |
Scarlet Red Oak | Quercus coccinea | Green | 600 | 28.2 | 72 |
Scarlet Red Oak | Quercus coccinea | 12.00% | 670 | 57.4 | 120 |
Southern Red Oak | Quercus falcata | Green | 520 | 20.9 | 48 |
Southern Red Oak | Quercus falcata | 12.00% | 590 | 42 | 75 |
Water Red Oak | Quercus nigra | Green | 560 | 25.8 | 61 |
Water Red Oak | Quercus nigra | 12.00% | 630 | 46.7 | 106 |
Willow Red Oak | Quercus phellos | Green | 560 | 20.7 | 51 |
Willow Red Oak | Quercus phellos | 12.00% | 690 | 48.5 | 100 |
Bur White Oak | Quercus macrocarpa | Green | 580 | 22.7 | 50 |
Bur White Oak | Quercus macrocarpa | 12.00% | 640 | 41.8 | 71 |
Chestnut White Oak | Quercus montana | Green | 570 | 24.3 | 55 |
Chestnut White Oak | Quercus montana | 12.00% | 660 | 47.1 | 92 |
Live White Oak | Quercus virginiana | Green | 800 | 37.4 | 82 |
Live White Oak | Quercus virginiana | 12.00% | 880 | 61.4 | 127 |
Overcup White Oak | Quercus lyrata | Green | 570 | 23.2 | 55 |
Overcup White Oak | Quercus lyrata | 12.00% | 630 | 42.7 | 87 |
Post White Oak | Quercus stellata | Green | 600 | 24 | 56 |
Post White Oak | Quercus stellata | 12.00% | 670 | 45.3 | 91 |
Swamp Chestnut White Oak | Quercus michauxii | Green | 600 | 24.4 | 59 |
Swamp Chestnut White Oak | Quercus michauxii | 12.00% | 670 | 50.1 | 96 |
Swamp White Oak | Quercus bicolor | Green | 640 | 30.1 | 68 |
Swamp White Oak | Quercus bicolor | 12.00% | 720 | 59.3 | 122 |
White Oak | Quercus alba | Green | 600 | 24.5 | 57 |
White Oak | Quercus alba | 12.00% | 680 | 51.3 | 105 |
Sassafras | Sassafras albidum | Green | 420 | 18.8 | 41 |
Sassafras | Sassafras albidum | 12.00% | 460 | 32.8 | 62 |
Sweetgum | Liquidambar styraciflua | Green | 460 | 21 | 49 |
Sweetgum | Liquidambar styraciflua | 12.00% | 520 | 43.6 | 86 |
American Sycamore | Platanus occidentalis | Green | 460 | 20.1 | 45 |
American Sycamore | Platanus occidentalis | 12.00% | 490 | 37.1 | 69 |
Tanoak | Notholithocarpus densiflorus | Green | 580 | 32.1 | 72 |
Tanoak | Notholithocarpus densiflorus | 12.00% | 580 | 32.1 | 72 |
Black Tupelo | Nyssa sylvatica | Green | 460 | 21 | 48 |
Black Tupelo | Nyssa sylvatica | 12.00% | 500 | 38.1 | 66 |
Water Tupelo | Nyssa aquatica | Green | 460 | 23.2 | 50 |
Water Tupelo | Nyssa aquatica | 12.00% | 500 | 40.8 | 66 |
Black Walnut | Juglans nigra | Green | 510 | 29.6 | 66 |
Black Walnut | Juglans nigra | 12.00% | 550 | 52.3 | 101 |
Black Willow | Salix nigra | Green | 360 | 14.1 | 33 |
Black Willow | Salix nigra | 12.00% | 390 | 28.3 | 54 |
Yellow Poplar | Liriodendron tulipifera | Green | 400 | 18.3 | 41 |
Yellow Poplar | Liriodendron tulipifera | 12.00% | 420 | 38.2 | 70 |
Baldcypress | Taxodium distichum | Green | 420 | 24.7 | 46 |
Baldcypress | Taxodium distichum | 12.00% | 460 | 43.9 | 73 |
Atlantic White Cedar | Chamaecyparis thyoides | Green | 310 | 16.5 | 32 |
Atlantic White Cedar | Chamaecyparis thyoides | 12.00% | 320 | 32.4 | 47 |
Eastern Redcedar | Juniperus virginiana | Green | 440 | 24.6 | 48 |
Eastern Redcedar | Juniperus virginiana | 12.00% | 470 | 41.5 | 61 |
Incense Cedar | Calocedrus decurrens | Green | 350 | 21.7 | 43 |
Incense Cedar | Calocedrus decurrens | 12.00% | 370 | 35.9 | 55 |
Northern White Cedar | Thuja occidentalis | Green | 290 | 13.7 | 29 |
Northern White Cedar | Thuja occidentalis | 12.00% | 310 | 27.3 | 45 |
Port Orford Cedar | Chamaecyparis lawsoniana | Green | 390 | 21.6 | 45 |
Port Orford Cedar | Chamaecyparis lawsoniana | 12.00% | 430 | 43.1 | 88 |
Western Redcedar | Thuja plicata | Green | 310 | 19.1 | 35.9 |
Western Redcedar | Thuja plicata | 12.00% | 320 | 31.4 | 51.7 |
Yellow Cedar | Cupressus nootkatensis | Green | 420 | 21 | 44 |
Yellow Cedar | Cupressus nootkatensis | 12.00% | 440 | 43.5 | 77 |
Coast Douglas Fir | Pseudotsuga menziesii var. menziesii | Green | 450 | 26.1 | 53 |
Coast Douglas Fir | Pseudotsuga menziesii var. menziesii | 12.00% | 480 | 49.9 | 85 |
Interior West Douglas Fir | Pseudotsuga Menziesii | Green | 460 | 26.7 | 53 |
Interior West Douglas Fir | Pseudotsuga Menziesii | 12.00% | 500 | 51.2 | 87 |
Interior North Douglas Fir | Pseudotsuga menziesii var. glauca | Green | 450 | 23.9 | 51 |
Interior North Douglas Fir | Pseudotsuga menziesii var. glauca | 12.00% | 480 | 47.6 | 90 |
Interior South Douglas Fir | Pseudotsuga lindleyana | Green | 430 | 21.4 | 47 |
Interior South Douglas Fir | Pseudotsuga lindleyana | 12.00% | 460 | 43 | 82 |
Balsam Fir | Abies balsamea | Green | 330 | 18.1 | 38 |
Balsam Fir | Abies balsamea | 12.00% | 350 | 36.4 | 63 |
California Red Fir | Abies magnifica | Green | 360 | 19 | 40 |
California Red Fir | Abies magnifica | 12.00% | 380 | 37.6 | 72.4 |
Grand Fir | Abies grandis | Green | 350 | 20.3 | 40 |
Grand Fir | Abies grandis | 12.00% | 370 | 36.5 | 61.4 |
Noble Fir | Abies procera | Green | 370 | 20.8 | 43 |
Noble Fir | Abies procera | 12.00% | 390 | 42.1 | 74 |
Pacific Silver Fir | Abies amabilis | Green | 400 | 21.6 | 44 |
Pacific Silver Fir | Abies amabilis | 12.00% | 430 | 44.2 | 75 |
Subalpine Fir | Abies lasiocarpa | Green | 310 | 15.9 | 34 |
Subalpine Fir | Abies lasiocarpa | 12.00% | 320 | 33.5 | 59 |
White Fir | Abies concolor | Green | 370 | 20 | 41 |
White Fir | Abies concolor | 12.00% | 390 | 40 | 68 |
Eastern Hemlock | Tsuga canadensis | Green | 380 | 21.2 | 44 |
Eastern Hemlock | Tsuga canadensis | 12.00% | 400 | 37.3 | 61 |
Mountain Hemlock | Tsuga mertensiana | Green | 420 | 19.9 | 43 |
Mountain Hemlock | Tsuga mertensiana | 12.00% | 450 | 44.4 | 79 |
Western Hemlock | Tsuga heterophylla | Green | 420 | 23.2 | 46 |
Western Hemlock | Tsuga heterophylla | 12.00% | 450 | 49 | 78 |
Western Larch | Larix occidentalis | Green | 480 | 25.9 | 53 |
Western Larch | Larix occidentalis | 12.00% | 520 | 52.5 | 90 |
Eastern White Pine | Pinus strobus | Green | 340 | 16.8 | 34 |
Eastern White Pine | Pinus strobus | 12.00% | 350 | 33.1 | 59 |
Jack Pine | Jack pine | Green | 400 | 20.3 | 41 |
Jack Pine | Jack pine | 12.00% | 430 | 39 | 68 |
Loblolly Pine | Pinus taeda | Green | 470 | 24.2 | 50 |
Loblolly Pine | Pinus taeda | 12.00% | 510 | 49.2 | 88 |
Lodgepole Pine | Pinus contorta | Green | 380 | 18 | 38 |
Lodgepole Pine | Pinus contorta | 12.00% | 410 | 37 | 65 |
Longleaf Pine | Longleaf pine | Green | 540 | 29.8 | 59 |
Longleaf Pine | Longleaf pine | 12.00% | 590 | 58.4 | 100 |
Pitch Pine | Pinus rigida | Green | 470 | 20.3 | 47 |
Pitch Pine | Pinus rigida | 12.00% | 520 | 41 | 74 |
Pond Pine | Pinus serotina | Green | 510 | 25.2 | 51 |
Pond Pine | Pinus serotina | 12.00% | 560 | 52 | 80 |
Ponderosa Pine | Pinus ponderosa | Green | 380 | 16.9 | 35 |
Ponderosa Pine | Pinus ponderosa | 12.00% | 400 | 36.7 | 65 |
Red Pine | Pinus resinosa | Green | 410 | 18.8 | 40 |
Red Pine | Pinus resinosa | 12.00% | 460 | 41.9 | 76 |
Sand Pine | Pinus clausa | Green | 460 | 23.7 | 52 |
Sand Pine | Pinus clausa | 12.00% | 480 | 47.7 | 80 |
Shortleaf Pine | Pinus echinata | Green | 470 | 24.3 | 51 |
Shortleaf Pine | Pinus echinata | 12.00% | 510 | 50.1 | 90 |
Slash Pine | Pinus elliottii | Green | 540 | 26.3 | 60 |
Slash Pine | Pinus elliottii | 12.00% | 590 | 56.1 | 112 |
Spruce Pine | Pinus glabra | Green | 410 | 19.6 | 41 |
Spruce Pine | Pinus glabra | 12.00% | 440 | 39 | 72 |
Sugar Pine | Pinus lambertiana | Green | 340 | 17 | 34 |
Sugar Pine | Pinus lambertiana | 12.00% | 360 | 30.8 | 57 |
Virginia Pine | Pinus virginiana | Green | 450 | 23.6 | 50 |
Virginia Pine | Pinus virginiana | 12.00% | 480 | 46.3 | 90 |
Western White Pine | Pinus monticola | Green | 360 | 16.8 | 32 |
Western White Pine | Pinus monticola | 12.00% | 380 | 34.7 | 67 |
Redwood Old Growth | Sequoia sempervirens | Green | 380 | 29 | 52 |
Redwood Old Growth | Sequoia sempervirens | 12.00% | 400 | 42.4 | 69 |
Redwood New Growth | Sequoia sempervirens | Green | 340 | 21.4 | 41 |
Redwood New Growth | Sequoia sempervirens | 12.00% | 350 | 36 | 54 |
Black Spruce | Picea mariana | Green | 380 | 19.6 | 42 |
Black Spruce | Picea mariana | 12.00% | 460 | 41.1 | 74 |
Engelmann Spruce | Picea engelmannii | Green | 330 | 15 | 32 |
Engelmann Spruce | Picea engelmannii | 12.00% | 350 | 30.9 | 64 |
Red Spruce | Picea rubens | Green | 370 | 18.8 | 41 |
Red Spruce | Picea rubens | 12.00% | 400 | 38.2 | 74 |
Sitka Spruce | Picea sitchensis | Green | 330 | 16.2 | 34 |
Sitka Spruce | Picea sitchensis | 12.00% | 360 | 35.7 | 65 |
White Spruce | Picea glauca | Green | 370 | 17.7 | 39 |
White Spruce | Picea glauca | 12.00% | 400 | 37.7 | 68 |
Tamarack Spruce | Larix laricina | Green | 490 | 24 | 50 |
Tamarack Spruce | Larix laricina | 12.00% | 530 | 49.4 | 80 |
Balku bans | Bambusa balcooa | green | 45 | 73.7 | |
Balku bans | Bambusa balcooa | air dry | 54.15 | 81.1 | |
Balku bans | Bambusa balcooa | 8.5 | 820 | 69 | 151 |
Indian thorny bamboo | Bambusa bambos | 9.5 | 710 | 61 | 143 |
Indian thorny bamboo | Bambusa bambos | 43.05 | 37.15 | ||
Nodding Bamboo | Bambusa nutans | 8 | 890 | 75 | 52.9 |
Nodding Bamboo | Bambusa nutans | 87 | 46 | 52.4 | |
Nodding Bamboo | Bambusa nutans | 12 | 85 | 67.5 | |
Nodding Bamboo | Bambusa nutans | 88.3 | 44.7 | 88 | |
Nodding Bamboo | Bambusa nutans | 14 | 47.9 | 216 | |
Clumping Bamboo | Bambusa pervariabilis | 45.8 | |||
Clumping Bamboo | Bambusa pervariabilis | 5 | 79 | 80 | |
Clumping Bamboo | Bambusa pervariabilis | 20 | 35 | 37 | |
Burmese bamboo | Bambusa polymorpha | 95.1 | 32.1 | 28.3 | |
Bambusa spinosa | air dry | 57 | 51.77 | ||
Indian timber bamboo | Bambusa tulda | 73.6 | 40.7 | 51.1 | |
Indian timber bamboo | Bambusa tulda | 11.9 | 68 | 66.7 | |
Indian timber bamboo | Bambusa tulda | 8.6 | 910 | 79 | 194 |
dragon bamboo | Dendrocalamus giganteus | 8 | 740 | 70 | 193 |
Hamilton's bamboo | Dendrocalamus hamiltonii | 8.5 | 590 | 70 | 89 |
White bamboo | Dendrocalamus membranaceus | 102 | 40.5 | 26.3 | |
String Bamboo | Gigantochloa apus | 54.3 | 24.1 | 102 | |
String Bamboo | Gigantochloa apus | 15.1 | 37.95 | 87.5 | |
Java Black Bamboo | Gigantochloa atroviolacea | 54 | 23.8 | 92.3 | |
Java Black Bamboo | Gigantochloa atroviolacea | 15 | 35.7 | 94.1 | |
Giant Atter | Gigantochloa atter | 72.3 | 26.4 | 98 | |
Giant Atter | Gigantochloa atter | 14.4 | 31.95 | 122.7 | |
Gigantochloa macrostachya | 8 | 960 | 71 | 154 | |
American Narrow-Leaved Bamboo | Guadua angustifolia | 42 | 53.5 | ||
American Narrow-Leaved Bamboo | Guadua angustifolia | 63.6 | 144.8 | ||
American Narrow-Leaved Bamboo | Guadua angustifolia | 86.3 | 46 | ||
American Narrow-Leaved Bamboo | Guadua angustifolia | 77.5 | 82 | ||
American Narrow-Leaved Bamboo | Guadua angustifolia | 15 | 56 | 87 | |
American Narrow-Leaved Bamboo | Guadua angustifolia | 63.3 | |||
American Narrow-Leaved Bamboo | Guadua angustifolia | 28 | |||
American Narrow-Leaved Bamboo | Guadua angustifolia | 56.2 | |||
American Narrow-Leaved Bamboo | Guadua angustifolia | 38 | |||
Berry Bamboo | Melocanna baccifera | 12.8 | 69.9 | 57.6 | |
Japanese timber bamboo | Phyllostachys bambusoides | 51 | |||
Japanese timber bamboo | Phyllostachys bambusoides | 8 | 730 | 63 | |
Japanese timber bamboo | Phyllostachys bambusoides | 64 | 44 | ||
Japanese timber bamboo | Phyllostachys bambusoides | 61 | 40 | ||
Japanese timber bamboo | Phyllostachys bambusoides | 9 | 71 | ||
Japanese timber bamboo | Phyllostachys bambusoides | 9 | 74 | ||
Japanese timber bamboo | Phyllostachys bambusoides | 12 | 54 | ||
Tortoise shell bamboo | Phyllostachys edulis | 44.6 | |||
Tortoise shell bamboo | Phyllostachys edulis | 75 | 67 | ||
Tortoise shell bamboo | Phyllostachys edulis | 15 | 71 | ||
Tortoise shell bamboo | Phyllostachys edulis | 6 | 108 | ||
Tortoise shell bamboo | Phyllostachys edulis | 0.2 | 147 | ||
Tortoise shell bamboo | Phyllostachys edulis | 5 | 117 | 51 | |
Tortoise shell bamboo | Phyllostachys edulis | 30 | 44 | 55 | |
Tortoise shell bamboo | Phyllostachys edulis | 12.5 | 603 | 60.3 | |
Tortoise shell bamboo | Phyllostachys edulis | 10.3 | 530 | 83 | |
Early Bamboo | Phyllostachys praecox | 28.5 | 827 | 79.3 | |
Oliveri | Thyrsostachys oliveri | 53 | 46.9 | 61.9 | |
Oliveri | Thyrsostachys oliveri | 7.8 | 58 | 90 |
There is a strong relationship between the properties of wood and the properties of the particular tree that yielded it, at least for certain species. For example, in loblolly pine, wind exposure and stem position greatly affect the hardness of wood, as well as compression wood content. The density of wood varies with species. The density of a wood correlates with its strength (mechanical properties). For example, mahogany is a medium-dense hardwood that is excellent for fine furniture crafting, whereas balsa is light, making it useful for Physical model building. One of the densest woods is Olea laurifolia.
Aside from water, wood has three main components. Cellulose, a crystalline polymer derived from glucose, constitutes about 41–43%. Next in abundance is hemicellulose, which is around 20% in deciduous trees but near 30% in conifers. It is mainly pentose that are linked in an irregular manner, in contrast to the cellulose. Lignin is the third component at around 27% in coniferous wood vs. 23% in deciduous trees. Lignin confers the hydrophobic properties reflecting the fact that it is based on . These three components are interwoven, and direct covalent linkages exist between the lignin and the hemicellulose. A major focus of the paper industry is the separation of the lignin from the cellulose, from which paper is made.
In chemical terms, the difference between hardwood and softwood is reflected in the composition of the constituent lignin. Hardwood lignin is primarily derived from sinapyl alcohol and coniferyl alcohol. Softwood lignin is mainly derived from coniferyl alcohol.
These compounds contribute to various physical and chemical properties of the wood, such as wood color, fragnance, durability, acoustic properties, hygroscopicity, adhesion, and drying. Considering these impacts, wood extractives also affect the properties of pulp and paper, and importantly cause many problems in Papermaking. Some extractives are surface-active substances and unavoidably affect the surface properties of paper, such as water adsorption, friction and strength. Lipophilicity extractives often give rise to sticky deposits during kraft pulping and may leave spots on paper. Extractives also account for paper smell, which is important when making food contact materials.
Most wood extractives are Lipophilicity and only a little part is water-soluble. The lipophilic portion of extractives, which is collectively referred as wood resin, contains and , and steryl esters, , , , and . The heating of resin, i.e. distillation, vaporizes the volatile terpenes and leaves the solid component – rosin. The concentrated liquid of volatile compounds extracted during steam distillation is called essential oil. Distillation of oleoresin obtained from many pines provides rosin and turpentine.
Most extractives can be categorized into three groups: aliphatic compounds, and Phenols. The latter are more water-soluble and usually are absent in the resin.
Wood to be used for construction work is commonly known as lumber in North America. Elsewhere, lumber usually refers to felled trees, and the word for sawn planks ready for use is timber. In medieval Europe oak was the wood of choice for all wood construction, including beams, walls, doors, and floors. Today a wider variety of woods is used: solid wood doors are often made from Populus, small-knotted pine, and Douglas fir.
New domestic housing in many parts of the world today is commonly made from timber-framed construction. Engineered wood products are becoming a bigger part of the construction industry. They may be used in both residential and commercial buildings as structural and aesthetic materials.
In buildings made of other materials, wood will still be found as a supporting material, especially in roof construction, in interior doors and their frames, and as exterior cladding.
Wood is also commonly used as shuttering material to form the mold into which concrete is poured during reinforced concrete construction.
Solid hardwood flooring is usually cheaper than engineered timbers and damaged areas can be sanded down and refinished repeatedly, the number of times being limited only by the thickness of wood above the tongue.
Solid hardwood floors were originally used for structural purposes, being installed perpendicular to the wooden support beams of a building (the joists or bearers) and solid construction timber is still often used for sports floors as well as most traditional wood blocks, and parquetry.
These products include glued laminated timber (glulam), wood structural panels (including plywood, oriented strand board and composite panels), laminated veneer lumber (LVL) and other structural composite lumber (SCL) products, parallel strand lumber, and I-joists. Approximately 100 million cubic meters of wood was consumed for this purpose in 1991. The trends suggest that particle board and fiber board will overtake plywood.
Wood unsuitable for construction in its native form may be broken down mechanically (into fibers or chips) or chemically (into cellulose) and used as a raw material for other building materials, such as engineered wood, as well as particle board, hardboard, and medium-density fiberboard (MDF). Such wood derivatives are widely used: wood fibers are an important component of most paper, and cellulose is used as a component of some synthetic materials. Wood derivatives can be used for kinds of flooring, for example laminate flooring.
Other uses of wood in the arts include:
Many other types of sports and recreation equipment, such as , ice hockey sticks, and archery bows, were commonly made of wood in the past, but have since been replaced with more modern materials such as aluminium, titanium or composite materials such as fiberglass and carbon fiber. One noteworthy example of this trend is the family of commonly known as the woods, the heads of which were traditionally made of Diospyros wood in the early days of the game of golf, but are now generally made of metal or (especially in the case of drivers) carbon-fiber composites.
|
|