Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.
Titanium was discovered in Cornwall, Great Britain, by William Gregor in 1791 and was named by Martin Heinrich Klaproth after the Titans of Greek mythology. The element occurs within a number of , principally rutile and ilmenite, which are widely distributed in the Earth's crust and lithosphere; it is found in almost all living things, as well as bodies of water, rocks, and soils. The metal is extracted from its principal mineral ores by the Kroll process and Hunter process processes. The most common compound, titanium dioxide (TiO2), is a popular photocatalysis and is used in the manufacture of white pigments. Other compounds include titanium tetrachloride (TiCl4), a component of and ; and titanium trichloride (TiCl3), which is used as a catalyst in the production of polypropylene.
Titanium can be with iron, aluminium, vanadium, and molybdenum, among other elements. The resulting titanium alloys are strong, lightweight, and versatile, with applications including aerospace (, , and spacecraft), military, industrial processes (chemicals and petrochemicals, desalination plants, pulp, and paper), automotive, agriculture (farming), sporting goods, jewelry, and consumer electronics. Titanium is also considered one of the most Biocompatibility metals, leading to a range of medical applications including prostheses, orthopedic implants, , and surgical instruments.
The two most useful properties of the metal are its corrosion resistance and strength-to-density ratio, the highest of any metallic element. In its unalloyed condition, titanium is as strong as some , but less dense. There are two allotropy forms and five naturally occurring of this element, Ti through Ti, with Ti being the most abundant (73.8%).
Commercially pure (99.2% pure) grades of titanium have ultimate tensile strength of about 434 megapascal (63,000 psi), equal to that of common, low-grade steel alloys, but are less dense. Titanium is 60% denser than aluminium, but more than twice as strong as the most commonly used 6061-T6 aluminium alloy. Certain titanium alloys (e.g., Beta C) achieve tensile strengths of over 1,400 MPa (200,000 psi). However, titanium loses strength when heated above .
Titanium is not as hard as some grades of heat-treated steel; it is non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, because the material can galling unless sharp tools and proper cooling methods are used. Like steel structures, those made from titanium have a fatigue limit that guarantees longevity in some applications.
The metal is a dimorphic allotrope of a hexagonal close packed α form that changes into a body-centered cubic (lattice) β form at . The specific heat of the α form increases dramatically as it is heated to this transition temperature but then falls and remains fairly constant for the β form regardless of temperature.
Titanium is capable of withstanding attack by dilute sulfuric acid and hydrochloric acids at room temperature, chloride solutions, and most organic acids. However, titanium is corroded by concentrated acids. Titanium burns in normal air at temperatures lower than its melting point, so melting the metal is possible only in an inert atmosphere or vacuum. At room temperature, titanium is fairly inert to Halogen, but will violently combine with chlorine and bromine at to form titanium tetrachloride and titanium tetrabromide, respectively.
Titanium readily reacts with oxygen at in air, and at in pure oxygen, forming titanium dioxide. This oxide is also formed by reaction between titanium and pure oxygen at room temperature and pressure of . Titanium is one of the few elements that burns in pure nitrogen gas, reacting at to form titanium nitride, which causes embrittlement.
Common titanium-containing are anatase, brookite, ilmenite, perovskite, rutile, and titanite (sphene). Akaogiite is an extremely rare mineral consisting of titanium dioxide. Of these minerals, only rutile and ilmenite have economic importance, yet even they are difficult to find in high concentrations. About 6.0 and 0.7 million tonnes of those minerals were mined in 2011, respectively. Significant titanium-bearing ilmenite deposits exist in Australia, Canada, China, India, Mozambique, New Zealand, Norway, Sierra Leone, South Africa, and Ukraine. About 210,000 tonnes of titanium metal sponge were produced in 2020, mostly in China (110,000 t), Japan (50,000 t), Russia (33,000 t) and Kazakhstan (15,000 t). Total reserves of anatase, ilmenite, and rutile are estimated to exceed 2 billion tonnes.
The concentration of titanium is about 4 picomolar in the ocean. At 100 °C, the concentration of titanium in water is estimated to be less than 10 M at pH 7. The identity of titanium species in aqueous solution remains unknown because of its low solubility and the lack of sensitive spectroscopic methods, although only the 4+ oxidation state is stable in air. No evidence exists for a biological role, although rare organisms are known to accumulate high concentrations of titanium.
Titanium is contained in , and it has been detected in the Sun and in M-type (the coolest type) with a surface temperature of . Rocks brought back from the Moon during the Apollo 17 mission are composed of 12.1% TiO2. Native titanium (pure metallic) is very rare. Titanium. Mindat
The isotopes of titanium range from Ti to Ti. The primary decay mode for isotopes lighter than Ti is positron emission (with the exception of Ti which undergoes electron capture), leading to isotopes of scandium, and the primary mode for isotopes heavier than Ti is beta emission, leading to isotopes of vanadium.
Titanium becomes radioactive upon bombardment with deuterons, emitting mainly positrons and hard gamma rays.
The term usually refers to titanium(IV) compounds, as represented by barium titanate (BaTiO3). With a perovskite structure, this material exhibits piezoelectric properties and is used as a transducer in the interconversion of sound and electricity. Many minerals are titanates, such as ilmenite (FeTiO3). Star sapphires and ruby get their asterism (star-forming shine) from the presence of titanium dioxide impurities.
A variety of reduced oxides () of titanium are known, mainly reduced stoichiometry of titanium dioxide obtained by atmospheric plasma spraying. Ti3O5, described as a Ti(IV)-Ti(III) species, is a purple semiconductor produced by reduction of TiO2 with hydrogen at high temperatures, and is used industrially when surfaces need to be vapor-coated with titanium dioxide: it evaporates as pure TiO, whereas TiO2 evaporates as a mixture of oxides and deposits coatings with variable refractive index. Also known is Ti2O3, with the corundum structure, and TiO, with the rock salt structure, although often nonstoichiometric.
The of titanium(IV), prepared by treating TiCl4 with alcohols, are colorless compounds that convert to the dioxide on reaction with water. They are industrially useful for depositing solid TiO2 via the sol-gel process. Titanium isopropoxide is used in the synthesis of chiral organic compounds via the Sharpless epoxidation.
Titanium forms a variety of sulfides, but only TiS2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of lithium batteries. Because Ti(IV) is a HSAB theory, the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide.
Titanium(III) and titanium(II) also form stable chlorides. A notable example is titanium(III) chloride (TiCl3), which is used as a catalyst for production of (see Ziegler–Natta catalyst) and a reducing reagent in organic chemistry.
Around the same time, Franz-Joseph Müller von Reichenstein produced a similar substance, but could not identify it. The oxide was independently rediscovered in 1795 by chemist Martin Heinrich Klaproth in rutile from Boinik (the German name of Bajmócska), a village in Hungary (now Bojničky in Slovakia).
Klaproth found that it contained a new element and named it for the Titans of Greek mythology. After hearing about Gregor's earlier discovery, he obtained a sample of manaccanite and confirmed that it contained titanium.
The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in iron smelting) because titanium combines with the carbon to produce titanium carbide. An extraction of 95% pure titanium was achieved by Lars Fredrik Nilson and Otto Petterson. To achieve this they chlorinated titanium oxide in a carbon monoxide atmosphere with chlorine gas before reducing it to titanium metal by the use of sodium. Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCl4 with sodium at under great pressure in a batch production known as the Hunter process. Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll produced it by reducing titanium tetrachloride (TiCl4) with calcium. Eight years later he refined this process with magnesium and with sodium in what became known as the Kroll process. Although research continues to seek cheaper and more efficient routes, such as the FFC Cambridge process, the Kroll process is still predominantly used for commercial production.
Titanium of very high purity was made in small quantities when Anton Eduard van Arkel and Jan Hendrik de Boer discovered the iodide process in 1925, by reacting with iodine and decomposing the formed vapors over a hot filament to pure metal.
In the 1950s and 1960s, the Soviet Union pioneered the use of titanium in military and submarine applications (Alfa class and Mike class) as part of programs related to the Cold War. Starting in the early 1950s, titanium came into use extensively in military aviation, particularly in high-performance jets, starting with aircraft such as the F-100 Super Sabre and Lockheed A-12 and SR-71.
Throughout the Cold War period, titanium was considered a strategic material by the U.S. government, and a large stockpile of titanium Metal foam (a porous form of the pure metal) was maintained by the Defense National Stockpile Center, until the stockpile was dispersed in the 2000s. As of 2021, the four leading producers of titanium sponge were China (52%), Japan (24%), Russia (16%) and Kazakhstan (7%).
Because it cannot be readily produced by reduction of titanium dioxide, titanium metal is obtained by reduction of titanium tetrachloride (TiCl4) with magnesium metal in the Kroll process. The complexity of this batch production in the Kroll process explains the relatively high market value of titanium, despite the Kroll process being less expensive than the Hunter process. To produce the TiCl4 required by the Kroll process, the dioxide is subjected to carbothermic reduction in the presence of chlorine. In this process, the chlorine gas is passed over a red-hot mixture of rutile or ilmenite in the presence of carbon. After extensive purification by fractional distillation, the TiCl4 is reduced with molten magnesium in an argon atmosphere.
One method that has been developed to potentially supplant the Kroll process is known as hydrogen-assisted magnesiothermic reduction and makes use of magnesium, hydrochloric acid, and a hydrogen atmosphere to directly reduce titanium dioxide to pure titanium. The reduction of titanium dioxide powder by magnesium in an atomphere of hydrogen can be followed by a leaching step with hydrochloric acid, which removes magnesium and residual non-titanium oxides. This is followed by additional reduction and leaching steps, and eventually results in pure titanium powder or titanium hydride.
Titanium is very difficult to solder directly, and hence a solderability metal or alloy such as steel is coated on titanium prior to soldering. Titanium metal can be machined with the same equipment and the same processes as stainless steel.
About fifty grades of are designed and currently used, although only a couple of dozen are readily available commercially. The ASTM International recognizes 31 grades of titanium metal and alloys, of which grades one through four are commercially pure (unalloyed). Those four vary in tensile strength as a function of oxygen content, with grade 1 being the most ductile (lowest tensile strength with an oxygen content of 0.18%), and grade 4 the least ductile (highest tensile strength with an oxygen content of 0.40%). The remaining grades are alloys, each designed for specific properties of ductility, strength, hardness, electrical resistivity, creep resistance, specific corrosion resistance, and combinations thereof.
In addition to the ASTM specifications, titanium alloys are also produced to meet aerospace and military specifications (SAE-AMS, MIL-T), ISO standards, and country-specific specifications, as well as proprietary end-user specifications for aerospace, military, medical, and industrial applications.
The Lockheed A-12 and the SR-71 "Blackbird" were two of the first aircraft frames where titanium was used, paving the way for much wider use in modern military and commercial aircraft. A large amount of titanium mill products are used in the production of many aircraft, such as (following values are amount of raw mill products used, only a fraction of this ends up in the finished aircraft): 116 metric tons are used in the Boeing 787, 77 in the Airbus A380, 59 in the Boeing 777, 45 in the Boeing 747, 32 in the Airbus A340, 18 in the Boeing 737, 18 in the Airbus A330, and 12 in the Airbus A320.
Because titanium is resistant to corrosion by sea water, it is used to make propeller shafts, rigging, in desalination plants, heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for science and military. The former Soviet Union developed techniques for making submarines with hulls of titanium alloys, forging titanium in huge vacuum tubes.
Powdered titanium acts as a non-evaporative getter, and is one of several gas-reactive materials used to remove gases from ultra-high vacuum systems. This application manifested in titanium sublimation pumps first employed in 1961, though the metal was first used in vacuum systems to prevent chambers from oxidizing in a design created by Raymond Herb in 1953.
Titanium tetrachloride (TiCl4), a colorless liquid, is important as an intermediate in the process of making TiO2 and is also used to produce the Ziegler–Natta catalyst. Titanium tetrachloride is also used to iridize glass and, because it fumes strongly in moist air, it is used to make smoke screens.
Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and bicycle frames and components. Although not a mainstream material for bicycle production, titanium bikes have been used by racing teams and adventure cyclists.
Titanium alloys are used in spectacle frames that are rather expensive but highly durable, long lasting, light weight, and cause no skin allergies. Titanium is a common material for backpacking cookware and eating utensils. Though more expensive than traditional steel or aluminium alternatives, titanium products can be significantly lighter without compromising strength. Titanium horseshoes are preferred to steel by because they are lighter and more durable.
Titanium has occasionally been used in architecture. The Monument to Yuri Gagarin, the first man to travel in space, as well as the upper part of the Monument to the Conquerors of Space on top of the Cosmonaut Museum in Moscow are made of titanium.
Because of titanium's superior strength and light weight relative to other metals (steel, stainless steel, and aluminium), and because of recent advances in metalworking techniques, its use has become more widespread in the manufacture of firearms. Primary uses include pistol frames and revolver cylinders. For the same reasons, it is used in the body of some laptop computers (for example, in Apple's PowerBook G4) and phones (such as the iPhone 15 Pro).
Some upmarket lightweight and corrosion-resistant tools, such as shovels, knife handles and flashlights, are made of titanium or titanium alloys.
Titanium's durability, light weight, and dent and corrosion resistance make it useful for watch cases. Some artists work with titanium to produce sculptures, decorative objects and furniture.
Titanium may be anodising to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors. With this coloration and chemical inertness, titanium is a popular metal for body piercing.
Titanium has a minor use in dedicated non-circulating coins and medals. In 1999, Gibraltar released the world's first titanium coin for the millennium celebration. The Gold Coast Titans, an Australian rugby league team, award a medal of pure titanium to their player of the year.
Because titanium is non-ferromagnetic, patients with titanium implants can be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized.
Modern advancements in additive manufacturing techniques have increased potential for titanium use in orthopedic implant applications. Complex implant scaffold designs can be 3D-printed using titanium alloys, which allows for more patient-specific applications and increased implant osseointegration.
Titanium is used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where high strength and low weight are desirable.
Titanium dioxide are widely used in electronics and the delivery of pharmaceuticals and cosmetics.
As a powder or in the form of metal shavings, titanium metal poses a significant fire hazard and, when heated in air, an explosion hazard. Water and carbon dioxide are ineffective for extinguishing a titanium fire; fire classes dry powder agents must be used instead.
When used in the production or handling of chlorine, titanium should not be exposed to dry chlorine gas because it may result in a titanium–chlorine fire.
Titanium can catch fire when a fresh, non-oxidized surface comes in contact with liquid oxygen.
Chemical properties
Occurrence
+ 2017 production of titanium minerals and slag
! Country !! thousand
tonnes !! % of total33.1 13.1 9.3 8.9 6.4 4.9 4.4 4.3 4.3 100
Isotopes
Compounds
Oxides, sulfides, and alkoxides
Nitrides and carbides
Halides
Organometallic complexes
History
Production
Mineral beneficiation processes
Purification processes
Hunter process
Kroll process
Arkel-Boer process
Armstrong process
Other processes
Fabrication
Titanium alloys
Forming and forging
Applications
Pigments, additives, and coatings
pigment is chemically inert, resists fading in sunlight, and is very opaque: it imparts a pure and brilliant white color to the brown or grey chemicals that form the majority of household plastics. In nature, this compound is found in the minerals anatase, brookite, and rutile. Paint made with titanium dioxide does well in severe temperatures and marine environments. Pure titanium dioxide has a very high [[index of refraction|refractive index]] and an optical dispersion higher than [[diamond]]. Titanium dioxide is used in [[sunscreen]]s because it reflects and absorbs [[UV light]].
Aerospace and marine
Industrial
Consumer and architectural
Jewelry
Medical
Anticancer therapy studies
Nuclear waste storage
Hazards and safety
Function in plants
See also
Footnotes
Bibliography
External links
|
|