Statistics (from German language: , "description of a state, a country")" Statistik" in Digitales Wörterbuch der deutschen Sprache is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data.
In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, Oxford University Press.When census data cannot be collected, collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other. Inferences on mathematical statistics are made under the framework of probability theory, which deals with the analysis of random phenomena.
A standard statistical procedure involves the collection of data leading to a test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model. A hypothesis is proposed for the statistical relationship between the two data sets, and this is compared as an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is rejected when it is in fact true, giving a "false positive") and Type II errors (null hypothesis fails to be rejected when an it is in fact false, giving a "false negative"). Multiple problems have come to be associated with this framework, ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis.
Statistical measurement processes are also prone to error in regards to the data that they generate. Many of these errors are classified as random (noise) or systematic (bias), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also occur. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems.
In applying statistics to a problem, it is common practice to start with a population or process to be studied. Populations can be diverse topics, such as "all people living in a country" or "every atom composing a crystal". Ideally, statisticians compile data about the entire population (an operation called a census). This may be organized by governmental statistical institutes. Descriptive statistics can be used to summarize the population data. Numerical descriptors include mean and standard deviation for continuous data (like income), while frequency and percentage are more useful in terms of describing categorical data (like education).
When a census is not feasible, a chosen subset of the population called a sample is studied. Once a sample that is representative of the population is determined, data is collected for the sample members in an observational or setting. Again, descriptive statistics can be used to summarize the sample data. However, drawing the sample contains an element of randomness; hence, the numerical descriptors from the sample are also prone to uncertainty. To draw meaningful conclusions about the entire population, inferential statistics are needed. It uses patterns in the sample data to draw inferences about the population represented while accounting for randomness. These inferences may take the form of answering yes/no questions about the data (hypothesis testing), estimating numerical characteristics of the data (estimation), describing associations within the data (correlation), and modeling relationships within the data (for example, using regression analysis). Inference can extend to the forecasting, prediction, and estimation of unobserved values either in or associated with the population being studied. It can include extrapolation and interpolation of time series or spatial data, as well as data mining.
Although the term 'statistic' was introduced by the Italian scholar Girolamo Ghilini in 1589 with reference to a collection of facts and information about a state, it was the German Gottfried Achenwall in 1749 who started using the term as a collection of quantitative information, in the modern use for this science.
The earliest writing containing statistics in Europe dates back to 1663, with the publication of Natural and Political Observations upon the Bills of Mortality by John Graunt.Willcox, Walter (1938) "The Founder of Statistics". Review of the International Statistical Institute 5(4): 321–328. Early applications of statistical thinking revolved around the needs of states to base policy on demographic and economic data, hence its stat etymology. The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics is widely employed in government, business, and natural and social sciences.The mathematical foundations of statistics developed from discussions concerning games of chance among mathematicians such as Gerolamo Cardano, Blaise Pascal, Pierre de Fermat, and Christiaan Huygens. Although the idea of probability was already examined in ancient and medieval law and philosophy (such as the work of Juan Caramuel), probability theory as a mathematical discipline only took shape at the very end of the 17th century, particularly in Jacob Bernoulli posthumous work Ars Conjectandi.J. Franklin, The Science of Conjecture: Evidence and Probability before Pascal, Johns Hopkins Univ Pr 2002 This was the first book where the realm of games of chance and the realm of the probable (which concerned opinion, evidence, and argument) were combined and submitted to mathematical analysis.Schneider, I. (2005). Jakob Bernoulli, Ars Conjectandi (1713). In I. GrattanGuinness (Ed.), Landmark writings in Western Mathematics, 16401940 (pp. 88103).
The method of least squares was first described by AdrienMarie Legendre in 1805, though Carl Friedrich Gauss presumably made use of it a decade earlier in 1795.The modern field of statistics emerged in the late 19th and early 20th century in three stages.
The first wave, at the turn of the century, was led by the work of Francis Galton and Karl Pearson, who transformed statistics into a rigorous mathematical discipline used for analysis, not just in science, but in industry and politics as well. Galton's contributions included introducing the concepts of standard deviation, correlation, regression analysis and the application of these methods to the study of the variety of human characteristics—height, weight and eyelash length among others. Pearson developed the Pearson productmoment correlation coefficient, defined as a productmoment, the method of moments for the fitting of distributions to samples and the Pearson distribution, among many other things. Galton and Pearson founded Biometrika as the first journal of mathematical statistics and biostatistics (then called biometry), and the latter founded the world's first university statistics department at University College London.The second wave of the 1910s and 20s was initiated by William Sealy Gosset, and reached its culmination in the insights of Ronald Fisher, who wrote the textbooks that were to define the academic discipline in universities around the world. Fisher's most important publications were his 1918 seminal paper The Correlation between Relatives on the Supposition of Mendelian Inheritance (which was the first to use the statistical term, variance), his classic 1925 work Statistical Methods for Research Workers and his 1935 The Design of Experiments, where he developed rigorous design of experiments models. He originated the concepts of sufficiency, ancillary statistics, Fisher's linear discriminator and Fisher information. He also coined the term null hypothesis during the Lady tasting tea experiment, which "is never proved or established, but is possibly disproved, in the course of experimentation".OED quote: 1935 R.A. Fisher, The Design of Experiments ii. 19, "We may speak of this hypothesis as the 'null hypothesis', and the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation."Fisher1971loc=Chapter II. The Principles of Experimentation, Illustrated by a Psychophysical Experiment, Section 8. The Null Hypothesis In his 1930 book The Genetical Theory of Natural Selection, he applied statistics to various biology concepts such as Fisher's principle (which A. W. F. Edwards called "probably the most celebrated argument in evolutionary biology") and Fisherian runaway,Fisher, R.A. (1915) The evolution of sexual preference. Eugenics Review (7) 184:192Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Edwards, A.W.F. (2000) Perspectives: Anecdotal, Historical and Critical Commentaries on Genetics. The Genetics Society of America (154) 1419:1426
Andersson, M. and Simmons, L.W. (2006) Sexual selection and mate choice. Trends, Ecology and Evolution (21) 296:302Gayon, J. (2010) Sexual selection: Another Darwinian process. Comptes Rendus Biologies (333) 134:144 a concept in sexual selection about a positive feedback runaway effect found in evolution.The final wave, which mainly saw the refinement and expansion of earlier developments, emerged from the collaborative work between Egon Pearson and Jerzy Neyman in the 1930s. They introduced the concepts of "Type II" error, power of a test and confidence intervals. Jerzy Neyman in 1934 showed that stratified random sampling was in general a better method of estimation than purposive (quota) sampling.
Today, statistical methods are applied in all fields that involve decision making, for making accurate inferences from a collated body of data and for making decisions in the face of uncertainty based on statistical methodology. The use of modern has expedited largescale statistical computations and has also made possible new methods that are impractical to perform manually. Statistics continues to be an area of active research, for example on the problem of how to analyze big data.
To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative. Statistics offers methods to estimate and correct for any bias within the sample and data collection procedures. There are also methods of experimental design that can lessen these issues at the outset of a study, strengthening its capability to discern truths about the population.
Sampling theory is part of the mathematics of probability theory. Probability is used in mathematical statistics to study the sampling distributions of and, more generally, the properties of statistical procedures. The use of any statistical method is valid when the system or population under consideration satisfies the assumptions of the method. The difference in point of view between classic probability theory and sampling theory is, roughly, that probability theory starts from the given parameters of a total population to deduce probabilities that pertain to samples. Statistical inference, however, moves in the opposite direction—inductively inferring from samples to the parameters of a larger or total population.
Experiments on human behavior have special concerns. The famous Hawthorne study examined changes to the working environment at the Hawthorne plant of the Western Electric Company. The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected productivity. It turned out that productivity indeed improved (under the experimental conditions). However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and doubleblind. The Hawthorne effect refers to finding that an outcome (in this case, worker productivity) changed due to observation itself. Those in the Hawthorne study became more productive not because the lighting was changed but because they were being observed.
Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature. Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented with the Boolean data type, polytomous categorical variables with arbitrarily assigned in the integral data type, and continuous variables with the real data type involving floatingpoint arithmetic. But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented.
Other categorizations have been proposed. For example, Mosteller and Tukey (1977) distinguished grades, ranks, counted fractions, counts, amounts, and balances. Nelder (1990)John Nelder (1990). The knowledge needed to computerise the analysis and interpretation of statistical information. In Expert systems and artificial intelligence: the need for information about data. Library Association Report, London, March, 23–27. described continuous counts, continuous ratios, count ratios, and categorical modes of data. (See also: Chrisman (1998), van den Berg (1991).van den Berg, G. (1991). Choosing an analysis method. Leiden: DSWO Press)
The issue of whether or not it is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions. "The relationship between the data and what they describe merely reflects the fact that certain kinds of statistical statements may have truth values which are not invariant under some transformations. Whether or not a transformation is sensible to contemplate depends on the question one is trying to answer."Hand, D.J. (2004). Measurement theory and practice: The world through quantification. London: Arnold.
A statistic is a random variable that is a function of the random sample, but . The probability distribution of the statistic, though, may have unknown parameters. Consider now a function of the unknown parameter: an estimator is a statistic used to estimate such function. Commonly used estimators include sample mean, unbiased sample variance and sample covariance.
A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on the unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the zscore, the chi square statistic and Student's tvalue.
Between two estimators of a given parameter, the one with lower mean squared error is said to be more efficient. Furthermore, an estimator is said to be unbiased if its expected value is equal to the true value of the unknown parameter being estimated, and asymptotically unbiased if its expected value converges at the limit to the true value of such parameter.
Other desirable properties for estimators include: UMVUE estimators that have the lowest variance for all possible values of the parameter to be estimated (this is usually an easier property to verify than efficiency) and consistent estimators which converges in probability to the true value of such parameter.
This still leaves the question of how to obtain estimators in a given situation and carry the computation, several methods have been proposed: the method of moments, the maximum likelihood method, the least squares method and the more recent method of estimating equations.
The best illustration for a novice is the predicament encountered by a criminal trial. The null hypothesis, H_{0}, asserts that the defendant is innocent, whereas the alternative hypothesis, H_{1}, asserts that the defendant is guilty. The indictment comes because of suspicion of the guilt. The H_{0} (status quo) stands in opposition to H_{1} and is maintained unless H_{1} is supported by evidence "beyond a reasonable doubt". However, "failure to reject H_{0}" in this case does not imply innocence, but merely that the evidence was insufficient to convict. So the jury does not necessarily accept H_{0} but fails to reject H_{0}. While one can not "prove" a null hypothesis, one can test how close it is to being true with a power test, which tests for type II errors.
What statisticians call an alternative hypothesis is simply a hypothesis that contradicts the null hypothesis.
Standard deviation refers to the extent to which individual observations in a sample differ from a central value, such as the sample or population mean, while Standard error refers to an estimate of difference between sample mean and population mean.
A statistical error is the amount by which an observation differs from its expected value. A residual is the amount an observation differs from the value the estimator of the expected value assumes on a given sample (also called prediction).
Mean squared error is used for obtaining efficient estimators, a widely used class of estimators. Root mean square error is simply the square root of mean squared error.
Many statistical methods seek to minimize the residual sum of squares, and these are called "least squares" in contrast to Least absolute deviations. The latter gives equal weight to small and big errors, while the former gives more weight to large errors. Residual sum of squares is also differentiable, which provides a handy property for doing regression. Least squares applied to linear regression is called ordinary least squares method and least squares applied to nonlinear regression is called nonlinear least squares. Also in a linear regression model the non deterministic part of the model is called error term, disturbance or more simply noise. Both linear regression and nonlinear regression are addressed in polynomial least squares, which also describes the variance in a prediction of the dependent variable (y axis) as a function of the independent variable (x axis) and the deviations (errors, noise, disturbances) from the estimated (fitted) curve.
Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as Random error (noise) or Systematic error (bias), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems.Rubin, Donald B.; Little, Roderick J.A., Statistical analysis with missing data, New York: Wiley 2002
In principle confidence intervals can be symmetrical or asymmetrical. An interval can be asymmetrical because it works as lower or upper bound for a parameter (leftsided interval or right sided interval), but it can also be asymmetrical because the two sided interval is built violating symmetry around the estimate. Sometimes the bounds for a confidence interval are reached asymptotically and these are used to approximate the true bounds.
Referring to statistical significance does not necessarily mean that the overall result is significant in real world terms. For example, in a large study of a drug it may be shown that the drug has a statistically significant but very small beneficial effect, such that the drug is unlikely to help the patient noticeably.
Although in principle the acceptable level of statistical significance may be subject to debate, the significance level is the largest pvalue that allows the test to reject the null hypothesis. This test is logically equivalent to saying that the pvalue is the probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic. Therefore, the smaller the significance level, the lower the probability of committing type I error.
Some problems are usually associated with this framework (See criticism of hypothesis testing):
Even when statistical techniques are correctly applied, the results can be difficult to interpret for those lacking expertise. The statistical significance of a trend in the data—which measures the extent to which a trend could be caused by random variation in the sample—may or may not agree with an intuitive sense of its significance. The set of basic statistical skills (and skepticism) that people need to deal with information in their everyday lives properly is referred to as statistical literacy.
There is a general perception that statistical knowledge is alltoofrequently intentionally misused by finding ways to interpret only the data that are favorable to the presenter.Huff, Darrell (1954) How to Lie with Statistics, WW Norton & Company, Inc. New York. A mistrust and misunderstanding of statistics is associated with the quotation, "". Misuse of statistics can be both inadvertent and intentional, and the book How to Lie with Statistics, by Darrell Huff, outlines a range of considerations. In an attempt to shed light on the use and misuse of statistics, reviews of statistical techniques used in particular fields are conducted (e.g. Warne, Lazo, Ramos, and Ritter (2012)).
Ways to avoid misuse of statistics include using proper diagrams and avoiding bias.
Misuse can occur when conclusions are overgeneralized and claimed to be representative of more than they really are, often by either deliberately or unconsciously overlooking sampling bias. Bar graphs are arguably the easiest diagrams to use and understand, and they can be made either by hand or with simple computer programs. Most people do not look for bias or errors, so they are not noticed. Thus, people may often believe that something is true even if it is not well represented. To make data gathered from statistics believable and accurate, the sample taken must be representative of the whole. According to Huff, "The dependability of a sample can be destroyed by bias... allow yourself some degree of skepticism."To assist in the understanding of statistics Huff proposed a series of questions to be asked in each case:
Statistical consultants can help organizations and companies that do not have inhouse expertise relevant to their particular questions.
A typical statistics course covers descriptive statistics, probability, binomial and normal distributions, test of hypotheses and confidence intervals, linear regression, and correlation.
Modern fundamental statistical courses for undergraduate students focus on correct test selection, results interpretation, and use of free statistics software.
Increased computing power has also led to the growing popularity of computationally intensive methods based on resampling, such as and the bootstrap, while techniques such as Gibbs sampling have made use of more feasible. The computer revolution has implications for the future of statistics with a new emphasis on "experimental" and "empirical" statistics. A large number of both general and special purpose statistical software are now available. Examples of available software capable of complex statistical computation include programs such as Mathematica, SAS, SPSS, and R.
A typical "Business Statistics" course is intended for business majors, and covers Numerous texts are available, reflecting the scope and reach of the discipline in the business world:
In addition, there are particular types of statistical analysis that have also developed their own specialised terminology and methodology:
Statistics form a key basis tool in business and manufacturing as well. It is used to understand measurement systems variability, control processes (as in statistical process control or SPC), for summarizing data, and to make datadriven decisions. In these roles, it is a key tool, and perhaps the only reliable tool.

