In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and the ratio of oranges to the total amount of fruit is 8:14 (or 4:7).
The numbers in a ratio may be quantities of any kind, such as counts of people or objects, or such as measurements of lengths, weights, time, etc. In most contexts, both numbers are restricted to be Positive integer.
A ratio may be specified either by giving both constituting numbers, written as " a to b" or " a: b", or by giving just the value of their quotient Equal quotients correspond to equal ratios. A statement expressing the equality of two ratios is called a proportion.
Consequently, a ratio may be considered as an ordered pair of numbers, a fraction with the first number in the numerator and the second in the denominator, or as the value denoted by this fraction. Ratios of counts, given by (non-zero) , are , and may sometimes be natural numbers.
A more specific definition adopted in physical sciences (especially in metrology) for ratio is the dimensionless quotient between two physical quantities measured with the same measurement unit. A quotient of two quantities that are measured with units may be called a rate. "The quotient of two numbers (or quantities); the relative sizes of two numbers (or quantities)", "The Mathematics Dictionary".
When a ratio is written in the form A: B, the two-dot character is sometimes the colon punctuation mark. In Unicode, this is , although Unicode also provides a dedicated ratio character, .
The numbers A and B are sometimes called terms of the ratio, with A being the antecedent and B being the consequent. ratio. Encyclopædia Britannica.
A statement expressing the equality of two ratios A: B and C: D is called a proportion,Heath, p. 126. written as A: B = C: D or A: B∷ C: D. This latter form, when spoken or written in the English language, is often expressed as
A, B, C and D are called the terms of the proportion. A and D are called its extremes, and B and C are called its means. The equality of three or more ratios, like A: B = C: D = E: F, is called a continued proportion.New International Encyclopedia.
Ratios are sometimes used with three or even more terms, e.g., the proportion for the edge lengths of a "two by four" that is ten inches long is therefore
For a (rather dry) mixture of 4/1 parts in volume of cement to water, it could be said that the ratio of cement to water is 4:1, that there is 4 times as much cement as water, or that there is a quarter (1/4) as much water as cement.
The meaning of such a proportion of ratios with more than two terms is that the ratio of any two terms on the left-hand side is equal to the ratio of the corresponding two terms on the right-hand side.
Euclid collected the results appearing in the Elements from earlier sources. The Pythagoreanism developed a theory of ratio and proportion as applied to numbers.Heath, p. 112 The Pythagoreans' conception of number included only what would today be called rational numbers, casting doubt on the validity of the theory in geometry where, as the Pythagoreans also discovered, incommensurable ratios (corresponding to irrational numbers) exist. The discovery of a theory of ratios that does not assume commensurability is probably due to Eudoxus of Cnidus. The exposition of the theory of proportions that appears in Book VII of The Elements reflects the earlier theory of ratios of commensurables.Heath, p. 113
The existence of multiple theories seems unnecessarily complex since ratios are, to a large extent, identified with quotients and their prospective values. However, this is a comparatively recent development, as can be seen from the fact that modern geometry textbooks still use distinct terminology and notation for ratios and quotients. The reasons for this are twofold: first, there was the previously mentioned reluctance to accept irrational numbers as true numbers, and second, the lack of a widely used symbolism to replace the already established terminology of ratios delayed the full acceptance of fractions as alternative until the 16th century.Smith, p. 480
Euclid does not define the term "measure" as used here, However, one may infer that if a quantity is taken as a unit of measurement, and a second quantity is given as an integral number of these units, then the first quantity measures the second. These definitions are repeated, nearly word for word, as definitions 3 and 5 in book VII.
Definition 3 describes what a ratio is in a general way. It is not rigorous in a mathematical sense and some have ascribed it to Euclid's editors rather than Euclid himself."Geometry, Euclidean", Encyclopædia Britannica Eleventh Edition, p. 682. Euclid defines a ratio as between two quantities of the same type, so by this definition the ratios of two lengths or of two areas are defined, but not the ratio of a length and an area. Definition 4 makes this more rigorous. It states that a ratio of two quantities exists, when there is a multiple of each that exceeds the other. In modern notation, a ratio exists between quantities p and q, if there exist integers m and n such that mp> q and nq> p. This condition is known as the Archimedes property.
Definition 5 is the most complex and difficult. It defines what it means for two ratios to be equal. Today, this can be done by simply stating that ratios are equal when the quotients of the terms are equal, but such a definition would have been meaningless to Euclid. In modern notation, Euclid's definition of equality is that given quantities p, q, r and s, p: q∷ r: s if and only if, for any positive integers m and n, np < mq, np = mq, or np > mq according as nr < ms, nr = ms, or nr > ms, respectively.Heath, p. 114. This definition has affinities with Dedekind cuts as, with n and q both positive, np stands to mq as stands to the rational number (dividing both terms by nq).Heath, p. 125.
Definition 6 says that quantities that have the same ratio are proportional or in proportion. Euclid uses the Greek ἀναλόγον (analogon), this has the same root as λόγος and is related to the English word "analog".
Definition 7 defines what it means for one ratio to be less than or greater than another and is based on the ideas present in definition 5. In modern notation it says that given quantities p, q, r and s, p: q > r: s if there are positive integers m and n so that np > mq and nr ≤ ms.
As with definition 3, definition 8 is regarded by some as being a later insertion by Euclid's editors. It defines three terms p, q and r to be in proportion when p: q∷ q: r. This is extended to four terms p, q, r and s as p: q∷ q: r∷ r: s, and so on. Sequences that have the property that the ratios of consecutive terms are equal are called geometric progressions. Definitions 9 and 10 apply this, saying that if p, q and r are in proportion then p: r is the duplicate ratio of p: q and if p, q, r and s are in proportion then p: s is the triplicate ratio of p: q.
If there are 2 oranges and 3 apples, the ratio of oranges to apples is 2:3, and the ratio of oranges to the total number of pieces of fruit is 2:5. These ratios can also be expressed in fraction form: there are 2/3 as many oranges as apples, and 2/5 of the pieces of fruit are oranges. If orange juice concentrate is to be diluted with water in the ratio 1:4, then one part of concentrate is mixed with four parts of water, giving five parts total; the amount of orange juice concentrate is 1/4 the amount of water, while the amount of orange juice concentrate is 1/5 of the total liquid. In both ratios and fractions, it is important to be clear what is being compared to what, and beginners often make mistakes for this reason.
Fractions can also be inferred from ratios with more than two entities; however, a ratio with more than two entities cannot be completely converted into a single fraction, because a fraction can only compare two quantities. A separate fraction can be used to compare the quantities of any two of the entities covered by the ratio: for example, from a ratio of 2:3:7 we can infer that the quantity of the second entity is that of the third entity.
If a mixture contains substances A, B, C and D in the ratio 5:9:4:2, then there are 5 parts of A for every 9 parts of B, 4 parts of C, and 2 parts of D. As the total mixture contains 5/20 of A (5 parts out of 20), 9/20 of B, 4/20 of C, and 2/20 of D. If we divide all numbers by the total and multiply by 100, we have converted to percentages: 25% A, 45% B, 20% C, and 10% D (equivalent to writing the ratio as 25:45:20:10).
If the two or more ratio quantities encompass all of the quantities in a particular situation, it is said that "the whole" contains the sum of the parts: for example, a fruit basket containing two apples and three oranges and no other fruit is made up of two parts apples and three parts oranges. In this case, , or 40% of the whole is apples and , or 60% of the whole is oranges. This comparison of a specific quantity to "the whole" is called a proportion.
If the ratio consists of only two values, it can be represented as a fraction, in particular as a decimal fraction. For example, older have a 4:3 aspect ratio, which means that the width is 4/3 of the height (this can also be expressed as 1.33:1 or just 1.33 rounded to two decimal places). More recent widescreen TVs have a 16:9 aspect ratio, or 1.78 rounded to two decimal places. One of the popular widescreen movie formats is 2.35:1 or simply 2.35. Representing ratios as decimal fractions simplifies their comparison. When comparing 1.33, 1.78 and 2.35, it is obvious which format offers wider image. Such a comparison works only when values being compared are consistent, like always expressing width in relation to height.
Thus, the ratio 40:60 is equivalent in meaning to the ratio 2:3, the latter being obtained from the former by dividing both quantities by 20. Mathematically, we write 40:60 = 2:3, or equivalently 40:60∷2:3. The verbal equivalent is "40 is to 60 as 2 is to 3."
A ratio that has integers for both quantities and that cannot be reduced any further (using integers) is said to be in simplest form or lowest terms.
Sometimes it is useful to write a ratio in the form 1: x or x:1, where x is not necessarily an integer, to enable comparisons of different ratios. For example, the ratio 4:5 can be written as 1:1.25 (dividing both sides by 4) Alternatively, it can be written as 0.8:1 (dividing both sides by 5).
Where the context makes the meaning clear, a ratio in this form is sometimes written without the 1 and the ratio symbol (:), though, mathematically, this makes it a divisor or Multiplication.
Also well known is the golden ratio of two (mostly) lengths and , which is defined by the proportion
Similarly, the silver ratio of and is defined by the proportion
On the other hand, there are non-dimensionless quotients, also known as rates (sometimes also as ratios). "Ratio as a Rate . The first type of defined by Freudenthal, above, is known as rate, and illustrates a comparison between two variables with difference units. (...) A ratio of this sort produces a unique, new concept with its own entity, and this new concept is usually not considered a ratio, per se, but a rate or density.", "Ratio and Proportion: Research and Teaching in Mathematics Teachers" [3] In chemistry, mass concentration ratios are usually expressed as weight/volume fractions. For example, a concentration of 3% w/v usually means 3 g of substance in every 100 mL of solution. This cannot be converted to a dimensionless ratio, as in weight/weight or volume/volume fractions.
In barycentric coordinates, a point with coordinates α, β, γ is the point upon which a weightless sheet of metal in the shape and size of the triangle would exactly balance if weights were put on the vertices, with the ratio of the weights at A and B being α : β, the ratio of the weights at B and C being β : γ, and therefore the ratio of weights at A and C being α : γ.
In trilinear coordinates, a point with coordinates x: y: z has perpendicular distances to side BC (across from vertex A) and side CA (across from vertex B) in the ratio x: y, distances to side CA and side AB (across from C) in the ratio y: z, and therefore distances to sides BC and AB in the ratio x: z.
Since all information is expressed in terms of ratios (the individual numbers denoted by α, β, γ, x, y, and z have no meaning by themselves), a triangle analysis using barycentric or trilinear coordinates applies regardless of the size of the triangle.
|
|