Product Code Database
Example Keywords: grand theft -grand $52-167
   » Wiki: Petrochemical
Tag Wiki 'Petrochemical'.
Tag

Petrochemicals (sometimes abbreviated as petchemsKiesche, Liz, "Royal Dutch Shell may take 50% stake in $9B Indian petchem project", via , August 12, 2020. Retrieved 2020-08-12.) are the chemical products obtained from by refining. Some chemical compounds made from petroleum are also obtained from other , such as or , or renewable sources such as , or .

The two most common petrochemical classes are (including and ) and (including , and ).

produce olefins and aromatics by fluid catalytic cracking of petroleum fractions. produce olefins by of natural gas liquids like and . Aromatics are produced by catalytic reforming of naphtha. Olefins and aromatics are the building-blocks for a wide range of materials such as , , and . Olefins are the basis for and used in , , , , , and .

(2025). 9780884153153, Gulf Professional Publishing.

Global ethylene production was 190 million tonnes and propylene was 120 million tonnes in 2019. Aromatics production is approximately 70 million tonnes. The largest petrochemical industries are located in the and ; however, major growth in new production capacity is in the and . There is substantial inter-regional petrochemical trade.

Primary petrochemicals are divided into three groups depending on their chemical structure:

In 2007, the amounts of ethylene and propylene produced in steam crackers were about 115 M (megatonnes) and 70 Mt, respectively.

(2025). 9780444532923, Elsevier Science.
The output ethylene capacity of large steam crackers ranged up to as much as 1.0 – 1.5 Mt per year. Steam Cracking: Ethylene Production (PDF page 3 of 12 pages)

The adjacent diagram schematically depicts the major hydrocarbon sources and processes used in producing petrochemicals. SBS Polymer Supply Outlook

(2025). 9782710808015, Editions Technip.

Like commodity chemicals, petrochemicals are made on a very large scale. Petrochemical manufacturing units differ from commodity chemical plants in that they often produce a number of related products. Compare this with specialty chemical and manufacture where products are made in discrete batch processes.

Petrochemicals are predominantly made in a few manufacturing locations around the world, for example in and Industrial Cities in Saudi Arabia, and in the US, in in the Northeast of England in the , in in , in in the Netherlands, in in , in Jamnagar, in , and in Singapore. Not all of the petrochemical or commodity chemical materials produced by the chemical industry are made in one single location but groups of related materials are often made in adjacent manufacturing plants to induce industrial symbiosis as well as material and utility efficiency and other economies of scale. This is known in chemical engineering terminology as integrated manufacturing. Specialty and fine chemical companies are sometimes found in similar manufacturing locations as petrochemicals but, in most cases, they do not need the same level of large-scale infrastructure (e.g., pipelines, storage, ports, and power, etc.) and therefore can be found in multi-sector business parks.

The large-scale petrochemical manufacturing locations have clusters of manufacturing units that share utilities and large-scale infrastructures such as power stations, storage tanks, port facilities, road and rail terminals. In the United Kingdom, for example, there are four main locations for such manufacturing: near the River Mersey in North West England, on the Humber on the East coast of Yorkshire, in Grangemouth near the Firth of Forth in Scotland, and in Teesside as part of the Northeast of England Process Industry Cluster (NEPIC). To demonstrate the clustering and integration, some 50% of the United Kingdom's petrochemical and commodity chemicals are produced by the NEPIC industry cluster companies in Teesside.


History
In 1835, Henri Victor Regnault, a French chemist left in the sun and found white solid at the bottom of the flask which was polyvinyl chloride. In 1839, discovered polystyrene by accident by distilling . In 1856, William Henry Perkin discovered the first synthetic dye, . In 1888, Friedrich Reinitzer, an Austrian plant scientist observed cholesteryl benzoate had two different melting points. In 1909, invented made from and . In 1920, built in first petrochemical plant in the world.Alec Ross, 'The Industries of the Future, Simon&Schuster, 2016, pp. 7-8 In 1928, were invented using Fischer-Tropsch process. In 1929, invented synthetic rubber which is made up of and butadiene and used to make car tires. In 1933, Otto Röhm polymerized the first acrylic glass methyl methacrylate. In 1935, invented . In 1937, Wallace Hume Carothers invented . In 1938, invented . In 1941, Roy Plunkett invented . In 1946, he invented . Polyethylene terephthalate (PET) bottles are made from and . In 1949, Fritz Stastny turned into foam. After World War II, was discovered in the early 1950s. In 1965, invented .


Olefins
The following is a partial list of major commercial petrochemicals and their derivatives:
  • – the simplest olefin; used as a chemical feedstock and ripening stimulant
    • ethylene; LDPE, HDPE, LLDPE
    • – via ethylene hydration (chemical reaction adding ) of ethylene
    • – via ethylene
      • – via ethylene oxide hydration
        • engine coolant – ethylene glycol, water and inhibitor mixture
        • – any of several polymers with ester linkages in the main chain
      • – via glycol condescension
      • ethoxylates
    • 1,2-dichloroethane
      • trichloroethylene
      • tetrachloroethylene – also called perchloroethylene; used as a dry cleaning solvent and degreaser
      • – monomer for polyvinyl chloride
        • polyvinyl chloride (PVC) – a type of plastic used for piping, tubing, other things
  • – used as a monomer and a chemical feedstock
    • isomers of butylene – useful as monomers or co-monomers
    • 1,3-butadiene (or buta-1,3-diene) – a often used as a monomer or co-monomer for polymerization to such as , styrene-butadiene rubber, or a plastic such as acrylonitrile-butadiene-styrene (ABS)
      • – synthetic elastomers made of any one or more of several petrochemical (usually) monomers such as 1,3-, , , , ; elastomeric polymers are often made with a high percentage of conjugated diene monomers such as 1,3-butadiene, isoprene, or chloroprene
  • higher olefins
    • – such poly-alpha-olefins, which are used as lubricants
    • – used as monomers, co-monomers, and other chemical precursors. For example, a small amount of 1-hexene can be copolymerized with ethylene into a more flexible form of polyethylene.
    • other higher olefins
    • detergent alcohols


Aromatics
  • – the simplest aromatic hydrocarbon
    • – made from benzene and ethylene
      • – made by dehydrogenation of ethylbenzene; used as a monomer
        • – polymers with styrene as a monomer
    • – isopropylbenzene; a feedstock in the
      • – hydroxybenzene; often made by the cumene process
      • – dimethyl ketone; also often made by the cumene process
      • – a type of "double" phenol used in polymerization in epoxy resins and making a common type of polycarbonate
        • – a type of polymerizing glue from bisphenol A, epichlorohydrin, and some
        • – a plastic polymer made from bisphenol A and (carbonyl dichloride)
      • – liquids used for dissolving materials; examples often made from petrochemicals include ethanol, isopropyl alcohol, acetone, benzene, toluene, xylenes
    • – a 6-carbon aliphatic cyclic hydrocarbon sometimes used as a non-polar solvent
      • – a 6-carbon di, which can be a precursor used as a co-monomer together with a di to form an alternating copolymer form of nylon.
        • – types of , some are alternating copolymers formed from copolymerizing dicarboxylic acid or derivatives with diamines
      • – a 6-carbon cyclic
        • – types of , some are from polymerizing caprolactam
    • – can be made by single nitration of benzene
      • – aminobenzene
        • methylene diphenyl diisocyanate (MDI) – used as a co-monomer with or polyols to form or with di- or poly to form
    • – a general type of aromatic hydrocarbon, which can be used as a precursor for a (detergent)
      • – often include types such as alkylbenzene sulfonates and nonylphenol ethoxylates
  • – methylbenzene; can be a solvent or precursor for other chemicals
    • toluene diisocyanate (TDI) – used as co-monomers with polyether polyols to form polyurethanes or with di- or poly to form
    • – carboxybenzene
  • – any of three dimethylbenzene isomers, could be a solvent but more often precursor chemicals
    • – both can be oxidized to form ( ortho-)phthalic acid
      • phthalic anhydride
    • – both methyl groups can be oxidized to form terephthalic acid
      • dimethyl terephthalate – can be copolymerized to form certain polyesters
        • – although there can be many types, polyethylene terephthalate is made from petrochemical products and is very widely used in petrol stations
      • purified terephthalic acid – often copolymerized to form polyethylene terephthalate


List of petrochemicals
Basic Feedstock




Intermediates
2-Ethylhexanol (2-EH)

(AN)

Bis(2-ethylhexyl) phthalate (dioctyl phthalate)
n-

Dimethyl terephthalate (DMT)



Ethoxylate
1,2-Dichloroethane (ethylene dichloride or EDC)
(EG)
(EO)
Formaldehyde Moulding Compound (FMC)
n-
Linear alkyl benzene (LAB)

Methyl tert-butyl ether (MTBE)


Purified terephthalic acid (PTA)
(SM)
Thermosetting Resin (Urea/Melamine)
Vinyl acetate monomer (VAM)
Vinyl chloride monomer (VCM)


Acrylonitrile butadiene styrene (ABS)
Acrylonitrile styrene (AS)
(PBR)
Polyvinyl chloride (PVC)
(PE)
Polyethylene terephthalate (PET)

(PP)
(PS)
butadiene (SBR)
Acrylic-formaldehude (AF)




Marine fuel oil
Petroleum refining

and

chemicals
control chemicals
raw materials
chemicals and materials
, ,
Pharmaceutical drugs
Specialty and industrial chemicals
Specialty and
, and supplies
, , and containers
, , and
additives
Specialty and chemicals
and


See also
  • (APIC)
  • (NEPIC)


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time