Product Code Database
Example Keywords: leather -cap $8
   » » Wiki: Perspiration
Tag Wiki 'Perspiration'.
Tag

Perspiration, also known as sweat, is the fluid secreted by in the of .

Two types of can be found in humans: and apocrine glands. The eccrine sweat glands are distributed over much of the body and are responsible for secreting the watery, brackish sweat most often triggered by excessive body temperature. Apocrine sweat glands are restricted to the armpits and a few other areas of the body and produce an odorless, oily, opaque secretion which then gains its characteristic odor from bacterial decomposition.

In , sweating is primarily a means of , which is achieved by the water-rich secretion of the eccrine glands. Maximum sweat rates of an adult can be up to per hour or per day, but is less in children prior to puberty.

(2025). 9783540412342, Springer.
(1996). 9780195074925, Oxford University Press.
(1996). 9780195074925, Oxford University Press.
of sweat from the skin surface has a cooling effect due to evaporative cooling. Hence, in weather, or when the individual's muscles heat up due to exertion, more sweat is produced. Animals with few sweat glands, such as , accomplish similar temperature regulation results by panting, which evaporates water from the moist lining of the oral cavity and .

Although sweating is found in a wide variety of mammals, relatively few (apart from humans, , some primates and some ) produce sweat in order to cool down. In horses, such cooling sweat is created by apocrine glands and contains a wetting agent, the protein latherin which transfers from the skin to the surface of their coats.


Definitions
  • The words diaphoresis and can both mean either perspiration (in which they are with sweating) or excessive perspiration (in which sense they can be either synonymous with or differentiable from it only by clinical criteria involved in narrow specialist senses of the words).
  • is decreased sweating from whatever cause.
  • Focal hyperhidrosis is increased or excessive sweating in certain regions such as the underarm, palms, soles, face, or groin.
  • is excessive sweating, usually to an underlying condition (in which case it is called secondary hyperhidrosis) and usually involving the body as a whole (in which case it is called generalized hyperhidrosis).
  • Hidromeiosis is a reduction in sweating that is due to blockages of sweat glands in humid conditions.
  • A substance or medicine that causes perspiration is a sudorific or sudatory.


Signs and symptoms
Sweat contributes to when it is metabolized by on the . Medications that are used for other treatments and diet also affect odor. Some medical conditions, such as and diabetic ketoacidosis, can also affect sweat odor.


Causes
Diaphoresis is a non-specific symptom or sign, which means that it has many possible causes. Some causes of diaphoresis include physical exertion, , fever, ingestion of toxins or irritants, and high environmental temperature. Strong emotions (anger, fear, anxiety) and recall of past trauma can also trigger sweating. This is sometimes referred to as sweat."Beyond shyness and stage fright: Social anxiety disorder". Harvard Mental Health Letter. 4 April 2010. Retrieved December 8, 2012.

The vast majority of sweat glands in the body are innervated by sympathetic neurons.Boron, Walter F., and Emile L. Boulpaep. "Sweating." Medical Physiology. Updated 2nd ed. Philadelphia: Elsevier, 2012. 1260–264. Print. Sympathetic postganglionic neurons typically secrete and are named sympathetic neurons; however, the sympathetic postganglionic neurons that innervate sweat glands secrete and hence are termed sympathetic cholinergic neurons. Sweat glands, piloerector muscles, and some blood vessels are innervated by sympathetic cholinergic neurons.


Pathological sweating and symptoms
Diaphoresis may be associated with some abnormal conditions, such as and shock. If it is accompanied by unexplained , /, or by , , , , , , , , , and chest discomfort, it suggests serious illness.

Diaphoresis is also seen in an acute myocardial infarction (heart attack), from the increased firing of the sympathetic nervous system, and is frequent in serotonin syndrome, which can result in serious sickness or even death. Diaphoresis can also be caused by many types of infections, often accompanied by and/or which can trigger the result of . Most infections can cause some degree of diaphoresis and it is a very common symptom in some serious infections such as and . In addition, pneumothorax can cause diaphoresis with splinting of the chest wall. Neuroleptic malignant syndrome and other malignant diseases (e.g. leukemias) can also cause diaphoresis.

Diabetics relying on shots or oral medications may have low (), which can also cause diaphoresis.

Drugs (including , , alcohol, antidepressants and certain antipsychotics) may be causes, as well as from alcohol, , nonbenzodiazepines or painkiller dependencies. Sympathetic nervous system stimulants such as and have also been associated with diaphoresis. Diaphoresis due to ectopic is a classic symptom of a , a rare of the . Acetylcholinesterase inhibitors (e.g. some ) also cause contraction of sweat gland smooth muscle leading to diaphoresis. Mercury is well known for its use as a diaphoretic, and was widely used in the 19th and early 20th century by physicians to "purge" the body of an illness. However, due to the high toxicity of mercury, secondary symptoms would manifest, which were erroneously attributed to the former disease that was being treated with mercurials.

Infantile acrodynia (childhood mercury poisoning) is characterized by excessive perspiration. A clinician should immediately consider acrodynia in an afebrile child who is sweating profusely.

Some people can develop a .

(2016). 9783318059045 .
The allergy is not due to the sweat itself but instead to an allergy-producing protein secreted by bacteria found on the skin. Tannic-acid has been found to suppress the allergic response along with showering.


Hyperhidrosis
Millions of people are affected by , but more than half never receive treatment due to embarrassment, lack of awareness, or lack of concern. While it most commonly affects the , feet, and hands, it is possible for someone to experience this condition over their whole body. The face is another common area for hyperhidrosis to be an issue. Sweating uncontrollably is not always expected and may be embarrassing to people with the condition. It can cause both physiological and emotional problems in patients. It is generally inherited. It is not life-threatening, but it is threatening to a person's quality of life. Treatments for hyperhidrosis include antiperspirants, iontophoresis, and surgical removal of sweat glands. In severe cases, injections or surgical cutting of nerves that stimulate the excessive sweating (endoscopic thoracic sympathectomy) may be an option.


Night sweats
Night sweats, also known as nocturnal hyperhidrosis, is the occurrence of excessive sweating during sleep. The person may or may not also perspire excessively while awake.

One of the most common causes of night sweats in women over 40 is the hormonal changes related to menopause and perimenopause. This is a very common occurrence during the menopausal transition years.

While night sweats might be relatively harmless, it can also be a sign of a serious underlying disease. It is important to distinguish night sweats due to medical causes from those that occur simply because the sleep environment is too warm, either because the bedroom is unusually hot or because there are too many covers on the bed. Night sweats caused by a medical condition or infection can be described as "severe hot flashes occurring at night that can drench sleepwear and sheets, which are not related to the environment". Some of the underlying medical conditions and infections that cause these severe night sweats can be life-threatening and should promptly be investigated by a medical practitioner.


Mechanism
Sweating allows the body to regulate its temperature. Sweating is controlled from a center in the preoptic and anterior regions of the brain's , where thermosensitive neurons are located. The heat-regulatory function of the hypothalamus is also affected by inputs from temperature receptors in the . High skin temperature reduces the hypothalamic set point for sweating and increases the gain of the hypothalamic system in response to variations in core . Overall, however, the sweating response to a rise in hypothalamic ('core') temperature is much larger than the response to the same increase in average skin temperature.

Sweating causes a decrease in core temperature through evaporative cooling at the skin surface. As high energy molecules evaporate from the skin, releasing energy absorbed from the body, the skin and superficial vessels decrease in temperature. Cooled venous blood then returns to the body's core and counteracts rising core temperatures.

There are two situations in which the nerves will stimulate the sweat glands, causing perspiration: during physical heat and during emotional stress. In general, emotionally induced sweating is restricted to palms, soles, , and sometimes the , while physical heat-induced sweating occurs throughout the body.

People have an average of two to four million sweat glands, but how much sweat is released by each gland is determined by many factors, including sex, genetics, environmental conditions, age and fitness level. Two of the major contributors to sweat rate are an individual's fitness level and weight. If an individual weighs more, sweat rate is likely to increase because the body must exert more energy to function and there is more body mass to cool down. On the other hand, a fit person will start sweating earlier and more readily. As someone becomes fit, the body becomes more efficient at regulating the body's temperature and sweat glands adapt along with the body's other systems.

Human sweat is not pure ; though it contains no protein, it always contains a small amount (0.2–1%) of . When a person moves from a to a climate, adaptive changes occur in the sweating mechanisms of the person. This process is referred to as : the maximum rate of sweating increases and its solute composition decreases. The volume of water lost in sweat daily is highly variable, ranging from . The solute loss can be as much as 350mmol/d (or 90mmol/d acclimatised) of under the most extreme conditions. During average intensity exercise, sweat losses can average up to of water/hour. In a cool climate and in the absence of , sodium loss can be very low (less than 5 mmol/d). Sodium concentration in sweat is 30–65 mmol/L, depending on the degree of acclimatisation.

Horses have a thick, waterproofed, hairy coat that would normally block the rapid translocation of sweat water from the skin to the surface of the hair required for evaporative cooling. To solve this, horses have evolved a detergent-like protein, latherin, that they release at high concentrations in their sweat. Their perspiration unlike humans is created by apocrine glands. This protein, by wetting the horses' coat hairs facilitate water flow for cooling evaporation. The presence of this protein can be seen in the lathering that often occurs on the coats of sweating horses, especially when rubbed. In hot conditions, horses during three hours of moderate-intensity exercise can lose of water and of sodium, of chloride and of potassium.


Composition
Sweat is mostly . A microfluidic model of the eccrine sweat gland provides details on what solutes partition into sweat, their mechanisms of partitioning, and their fluidic transport to the skin surface. Dissolved in the water are trace amounts of , , and . Although the mineral content varies, some measured concentrations are: (), (), (), and ().

Relative to the plasma and extracellular fluid, the concentration of Na+ ions is much lower in sweat (≈40 mM in sweat versus ≈150 mM in plasma and extracellular fluid). Initially, within sweat has a high concentration of Na+ ions. In the sweat ducts, the Na+ ions are re-absorbed into tissue by epithelial sodium channels (ENaC) that are located on the apical membrane of epithelial cells that form the duct (see Fig. 9 of the reference).

Many other are also excreted in sweat, again an indication of their concentration is (although measurements can vary fifteenfold) (), (), (), (), (), and (). Probably many other less-abundant trace minerals leave the body through sweating with correspondingly lower concentrations. Some exogenous organic compounds make their way into sweat as exemplified by an unidentified odiferous "maple syrup" scented compound in several of the species in the mushroom genus Lactarius.Aurora, David "Lactarius fragilis" Mushrooms Demystified 1986 Ten Speed Press, Berkeley California In humans, sweat is relative to (i.e. less ). Sweat is found at moderately acidic to neutral pH levels, typically between 4.5 and 7.0.

Sweat contains many .


Other functions

Antimicrobial
Sweat may serve an function, like that of or other secretory fluids (e.g., tears, saliva, and milk). It does this through a combination of that either bind directly to, or prevent the binding of microbes to, the skin and seem to form part of the innate immune system.

In 2001, researchers at Eberhard-Karls University in Tübingen, Germany, isolated a large protein called from skin. This protein, which could be cleaved into other antimicrobial , was shown to be effective at killing some species of bacteria and fungi that affect humans, including , Enterococcus faecalis, Staphylococcus aureus, and . It was active at high salt concentrations and in the range of human sweat, where it was present at concentrations of 1–10 mg/ml.


Society and culture

Artificial perspiration
Artificial skin capable of sweating similar to natural sweat rates and with the surface texture and wetting properties of regular skin has been developed for research purposes. Artificial perspiration is also available for in-vitro testing, and contains 19 amino acids and the most abundant minerals and metabolites in sweat.


Diagnostics
There is interest in its use in wearable technology. Sweat can be sampled and sensed non-invasively and continuously using electronic tattoos, bands, or patches. However, sweat as a diagnostic fluid presents numerous challenges as well, such as very small sample volumes and filtration (dilution) of larger-sized hydrophilic analytes. Currently the only major commercial application for sweat diagnostics is for infant cystic fibrosis testing based on sweat chloride concentrations.


See also

Further reading

External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time