Iron is a chemical element; it has chemical symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's outer core and inner core. It is the fourth most abundant element in the Earth's crust. In its metallic state it was mainly Meteoric iron .
Extracting usable metal from requires or furnaces capable of reaching , about 500 °C (900 °F) higher than that required to smelting copper. Humans started to master that process in Eurasia during the 2nd millennium BC and the use of iron and began to displace copper alloys – in some regions, only around 1200 BC. That event is considered the transition from the Bronze Age to the Iron Age. In the modern world, iron alloys, such as steel, stainless steel, cast iron and alloy steel, are by far the most common industrial metals, due to their mechanical properties and low cost. The iron and steel industry is thus very important economically, and iron is the cheapest metal, with a price of a few dollars per kilogram or pound.
Pristine and smooth pure iron surfaces are a mirror-like silvery-gray. Iron reacts readily with oxygen and water to produce brown-to-black , commonly known as rust. Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than the metal and thus flakes off, exposing more fresh surfaces for corrosion. Chemically, the most common oxidation states of iron are iron(II) and iron(III). Iron shares many properties of other transition metals, including the other group 8 elements, ruthenium and osmium. Iron forms compounds in a wide range of , −4 to +7. Iron also forms many coordination complexes; some of them, such as ferrocene, ferrioxalate, and Prussian blue have substantial industrial, medical, or research applications.
The body of an adult human contains about 4 grams (0.005% body weight) of iron, mostly in hemoglobin and myoglobin. These two play essential roles in oxygen transport by blood and oxygen storage in . To maintain the necessary levels, human iron metabolism requires a minimum of iron in the diet. Iron is also the metal at the active site of many important redox enzymes dealing with cellular respiration and oxidation and reduction in plants and animals.
The first three forms are observed at ordinary pressures. As molten iron cools past its freezing point of 1538 °C, it crystallizes into its δ allotrope, which has a body-centered cubic (bcc) crystal structure. As it cools further to 1394 °C, it changes to its γ-iron allotrope, a face-centered cubic (fcc) crystal structure, or austenite. At 912 °C and below, the crystal structure again becomes the bcc α-iron allotrope.
The physical properties of iron at very high pressures and temperatures have also been studied extensively, because of their relevance to theories about the cores of the Earth and other planets. Above approximately 10 GPa and temperatures of a few hundred kelvin or less, α-iron changes into another hexagonal close-packed (hcp) structure, which is also known as hexaferrum. The higher-temperature γ-phase also changes into ε-iron, but does so at higher pressure.
Some controversial experimental evidence exists for a stable Beta phase at pressures above 50 GPa and temperatures of at least 1500 K. It is supposed to have an orthorhombic or a double hcp structure. (Confusingly, the term "β-iron" is sometimes also used to refer to α-iron above its Curie point, when it changes from being ferromagnetic to paramagnetic, even though its crystal structure has not changed.)
The Earth's inner core is generally presumed to consist of an iron-nickel alloy with ε (or β) structure.
The melting point of iron is experimentally well defined for pressures less than 50 GPa. For greater pressures, published data (as of 2007) still varies by tens of gigapascals and over a thousand kelvin.
In the absence of an external source of magnetic field, the atoms get spontaneously partitioned into , about 10 micrometers across,
Application of an external magnetic field causes the domains that are magnetized in the same general direction to grow at the expense of adjacent ones that point in other directions, reinforcing the external field. This effect is exploited in devices that need to channel magnetic fields to fulfill design function, such as electrical transformers, magnetic recording heads, and . Impurities, , or grain and particle boundaries can "pin" the domains in the new positions, so that the effect persists even after the external field is removed – thus turning the iron object into a (permanent) magnet.
Similar behavior is exhibited by some iron compounds, such as the ferrites including the mineral magnetite, a crystalline form of the mixed iron(II,III) oxide (although the atomic-scale mechanism, ferrimagnetism, is somewhat different). Pieces of magnetite with natural permanent magnetization () provided the earliest for navigation. Particles of magnetite were extensively used in magnetic recording media such as computer memory, , floppy disk, and disks, until they were replaced by cobalt-based materials.
60Fe is an extinct radionuclide of long half-life (2.6 million years). It is not found on Earth, but its ultimate decay product is its granddaughter, the stable nuclide 60Ni. Much of the past work on isotopic composition of iron has focused on the nucleosynthesis of 60Fe through studies of and ore formation. In the last decade, advances in mass spectrometry have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the of iron. Much of this work is driven by the Earth science and planetary science communities, although applications to biological and industrial systems are emerging.
In phases of the meteorites Semarkona and Chervony Kut, a correlation between the concentration of 60Ni, the daughter product of 60Fe, and the abundance of the stable iron isotopes provided evidence for the existence of 60Fe at the time of formation of the Solar System. Possibly the energy released by the decay of 60Fe, along with that released by 26Al, contributed to the remelting and differentiation of after their formation 4.6 billion years ago. The abundance of 60Ni present in material may bring further insight into the origin and early history of the Solar System.
The most abundant iron isotope 56Fe is of particular interest to nuclear scientists because it represents the most common endpoint of nucleosynthesis. Since 56Ni (14 ) is easily produced from lighter nuclei in the alpha process in in supernovae (see silicon burning process), it is the endpoint of fusion chains inside extremely massive stars. Although adding more alpha particles is possible, but nonetheless the sequence does effectively end at 56Ni because conditions in stellar interiors cause the competition between photodisintegration and the alpha process to favor photodisintegration around 56Ni. This 56Ni, which has a half-life of about 6 days, is created in quantity in these stars, but soon decays by two successive positron emissions within supernova decay products in the supernova remnant gas cloud, first to radioactive 56Co, and then to stable 56Fe. As such, iron is the most abundant element in the core of , and is the most abundant metal in and in the dense metal Planetary core such as Earth. It is also very common in the universe, relative to other stable Metallicity of approximately the same Atomic mass. Iron is the sixth most abundant element in the universe, and the most common refractory element.
Although a further tiny energy gain could be extracted by synthesizing 62Ni, which has a marginally higher binding energy than 56Fe, conditions in stars are unsuitable for this process. Element production in supernovas greatly favor iron over nickel, and in any case, 56Fe still has a lower mass per nucleon than 62Ni due to its higher fraction of lighter protons. Hence, elements heavier than iron require a supernova for their formation, involving r-process by starting 56Fe nuclei.
In the far future of the universe, assuming that proton decay does not occur, cold nuclear fusion occurring via quantum tunnelling would cause the light nuclei in ordinary matter to fuse into 56Fe nuclei. Fission and Alpha decay would then make heavy nuclei decay into iron, converting all stellar-mass objects to cold spheres of pure iron.
The rare are the main form of natural metallic iron on the Earth's surface. Items made of cold forging meteoritic iron have been found in various archaeological sites dating from a time when iron smelting had not yet been developed; and the Inuit people in Greenland have been reported to use iron from the Cape York meteorite for tools and hunting weapons. About 1 in 20 consist of the unique iron-nickel minerals taenite (35–80% iron) and kamacite (90–95% iron). Native iron is also rarely found in basalts that have formed from magmas that have come into contact with carbon-rich sedimentary rocks, which have reduced the oxygen fugacity sufficiently for iron to crystallize. This is known as telluric iron and is described from a few localities, such as Disko Island in West Greenland, Sakha Republic in Russia and Bühl in Germany.
Most of the iron in the crust is combined with various other elements to form many Iron ore. An important class is the iron oxide minerals such as hematite (Fe2O3), magnetite (Fe3O4), and siderite (FeCO3), which are the major iron ore. Many also contain the sulfide minerals pyrrhotite and pentlandite.Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy, Wiley, 20th ed, pp. 278–79 During weathering, iron tends to leach from sulfide deposits as the sulfate and from silicate deposits as the bicarbonate. Both of these are oxidized in aqueous solution and precipitate in even mildly elevated pH as iron(III) oxide.
Large deposits of iron are banded iron formations, a type of rock consisting of repeated thin layers of iron oxides alternating with bands of iron-poor shale and chert. The banded iron formations were laid down in the time between and .
Materials containing finely ground iron(III) oxides or oxide-hydroxides, such as ochre, have been used as yellow, red, and brown since pre-historical times. They contribute as well to the color of various rocks and , including entire geological formations like the Painted Hills in Oregon and the Buntsandstein ("colored sandstone", British Bunter).Dickinson, Robert E. (1964). Germany: A regional and economic geography (2nd ed.). London: Methuen. Through Eisensandstein (a Brown Jurassic 'iron sandstone', e.g. from Donzdorf in Germany)
target="_blank" rel="nofollow"> Naturwerksteine in Baden-Württemberg. Landesamt für Geologie, Rohstoffe und Bergbau, Baden-Württemberg and Bath stone in the UK, iron compounds are responsible for the yellowish color of many historical buildings and sculptures. The proverbial red color of the surface of Mars is derived from an iron oxide-rich regolith.
Significant amounts of iron occur in the iron sulfide mineral pyrite (FeS2), but it is difficult to extract iron from it and it is therefore not exploited.
According to the International Resource Panel's Metal Stocks in Society report, the global stock of iron in use in society is 2,200 kg per capita. More-developed countries differ in this respect from less-developed countries (7,000–14,000 vs 2,000 kg per capita).
target="_blank" rel="nofollow"> Metal Stocks in Society: Scientific synthesis, 2010, International Resource Panel, UNEP
Disodium tetracarbonylferrate (Collman's reagent) | |
Iron pentacarbonyl | |
Cyclopentadienyliron dicarbonyl dimer ("Fp2") | |
Ferrous sulfate, Ferrocene | |
Ferric chloride, Ferrocenium tetrafluoroborate | |
, FeO(BF4)2 | |
Potassium ferrate | |
7 (d1) | FeO4– (matrix isolation, 4K) |
Iron shows the characteristic chemical properties of the , namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration Ar3d64s2, of which the 3d and 4s electrons are relatively close in energy, and thus a number of electrons can be ionized.
Iron forms compounds mainly in the +2 (iron(II), "ferrous") and +3 (iron(III), "ferric"). Iron also occurs in high-valent iron, e.g., the purple potassium ferrate (K2FeO4), which contains iron in its +6 oxidation state. The anion FeO4– with iron in its +7 oxidation state, along with an iron(V)-peroxo isomer, has been detected by infrared spectroscopy at 4 K after cocondensation of laser-ablated Fe atoms with a mixture of O2/Ar. Iron(IV) is a common intermediate in many biochemical oxidation reactions.
Iron is the first of the transition metals that cannot reach its group oxidation state of +8, although its heavier congeners ruthenium and osmium can, with ruthenium having more difficulty than osmium. Ruthenium exhibits an aqueous cationic chemistry in its low oxidation states similar to that of iron, but osmium does not, favoring high oxidation states in which it forms anionic complexes. In the second half of the 3d transition series, vertical similarities down the groups compete with the horizontal similarities of iron with its neighbors cobalt and nickel in the periodic table, which are also ferromagnetic at room temperature and share similar chemistry. As such, iron, cobalt, and nickel are sometimes grouped together as the iron triad.
Unlike many other metals, iron does not form amalgams with mercury. As a result, mercury is traded in standardized 76 pound flasks (34 kg) made of iron.
Iron is by far the most reactive element in its group; it is pyrophoricity when finely divided and dissolves easily in dilute acids, giving Fe2+. However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid. High-purity iron, called electrolytic iron, is considered to be resistant to rust, due to its oxide layer.
Ferric iodide, a black solid, is not stable in ordinary conditions, but can be prepared through the reaction of iron pentacarbonyl with iodine and carbon monoxide in the presence of hexane and light at the temperature of −20 °C, with oxygen and water excluded. Complexes of ferric iodide with some soft bases are known to be stable compounds.Siegfried Pohl, Ulrich Bierbach, Wolfgang Saak; "FeI3SC(NMe2)2, a Neutral Thiourea Complex of Iron(III) Iodide"
The red-purple tetrahedral ferrate(VI) anion is such a strong oxidizing agent that it oxidizes ammonia to nitrogen (N2) and water to oxygen:
The pale-violet hexaquo complex is an acid such that above pH 0 it is fully hydrolyzed:
As pH rises above 0 the above yellow hydrolyzed species form and as it rises above 2–3, reddish-brown hydrous iron(III) oxide precipitates out of solution. Although Fe3+ has a d5 configuration, its absorption spectrum is not like that of Mn2+ with its weak, spin-forbidden d–d bands, because Fe3+ has higher positive charge and is more polarizing, lowering the energy of its ligand-to-metal charge transfer absorptions. Thus, all the above complexes are rather strongly colored, with the single exception of the hexaquo ion – and even that has a spectrum dominated by charge transfer in the near ultraviolet region. On the other hand, the pale green iron(II) hexaquo ion does not undergo appreciable hydrolysis. Carbon dioxide is not evolved when carbonate anions are added, which instead results in white iron(II) carbonate being precipitated out. In excess carbon dioxide this forms the slightly soluble bicarbonate, which occurs commonly in groundwater, but it oxidises quickly in air to form iron(III) oxide that accounts for the brown deposits present in a sizeable number of streams.
Iron(III) complexes are quite similar to those of chromium(III) with the exception of iron(III)'s preference for O-donor instead of N-donor ligands. The latter tend to be rather more unstable than iron(II) complexes and often dissociate in water. Many Fe–O complexes show intense colors and are used as tests for or . For example, in the ferric chloride test, used to determine the presence of phenols, iron(III) chloride reacts with a phenol to form a deep violet complex:
Among the halide and pseudohalide complexes, fluoro complexes of iron(III) are the most stable, with the colorless FeF5(H2O)2− being the most stable in aqueous solution. Chloro complexes are less stable and favor tetrahedral coordination as in FeCl4−; FeBr4− and FeI4− are reduced easily to iron(II). Thiocyanate is a common test for the presence of iron(III) as it forms the blood-red Fe(SCN)(H2O)52+. Like manganese(II), most iron(III) complexes are high-spin, the exceptions being those with ligands that are high in the spectrochemical series such as cyanide. An example of a low-spin iron(III) complex is Fe(CN)63−. Iron shows a great variety of electronic spin states, including every possible spin quantum number value for a d-block element from 0 (diamagnetic) to (5 unpaired electrons). This value is always half the number of unpaired electrons. Complexes with zero to two unpaired electrons are considered low-spin and those with four or five are considered high-spin.
Iron(II) complexes are less stable than iron(III) complexes but the preference for O-donor ligands is less marked, so that for example is known while is not. They have a tendency to be oxidized to iron(III) but this can be moderated by low pH and the specific ligands used.
Prussian blue or "ferric ferrocyanide", Fe4Fe(CN)63, is an old and well-known iron-cyanide complex, extensively used as pigment and in several other applications. Its formation can be used as a simple wet chemistry test to distinguish between aqueous solutions of Fe2+ and Fe3+ as they react (respectively) with potassium ferricyanide and potassium ferrocyanide to form Prussian blue.
Another old example of an organoiron compound is iron pentacarbonyl, Fe(CO)5, in which a neutral iron atom is bound to the carbon atoms of five carbon monoxide molecules. The compound can be used to make carbonyl iron powder, a highly reactive form of metallic iron. Thermolysis of iron pentacarbonyl gives triiron dodecacarbonyl, , a complex with a cluster of three iron atoms at its core. Collman's reagent, disodium tetracarbonylferrate, is a useful reagent for organic chemistry; it contains iron in the −2 oxidation state. Cyclopentadienyliron dicarbonyl dimer contains iron in the rare +1 oxidation state..
A landmark in this field was the discovery in 1951 of the remarkably stable sandwich compound ferrocene , by Pauson and Kealy and independently by Miller and colleagues, whose surprising molecular structure was determined only a year later by Woodward and Wilkinson and Fischer.
Ferrocene is still one of the most important tools and models in this class.
Iron-centered organometallic species are used as . The Knölker complex, for example, is a transfer hydrogenation catalyst for .
Meteoric iron was highly regarded due to its origin in the heavens and was often used to forge weapons and tools. For example, a dagger made of meteoric iron was found in the tomb of Tutankhamun, containing similar proportions of iron, cobalt, and nickel to a meteorite discovered in the area, deposited by an ancient meteor shower. Items that were likely made of iron by Egyptians date from 3000 to 2500 BC.
Meteoritic iron is comparably soft and ductile and easily cold forging but may get brittle when heated because of the nickel content.
Artifacts of smelted iron are found in India dating from 1800 to 1200 BC, and in the Levant from about 1500 BC (suggesting smelting in Anatolia or the Caucasus). Alleged references (compare history of metallurgy in South Asia) to iron in the Indian Vedas have been used for claims of a very early usage of iron in India respectively to date the texts as such. The rigveda term ayas (metal) refers to copper, while iron which is called as śyāma ayas, literally "black copper", first is mentioned in the post-rigvedic Atharvaveda.Michael Witzel (2001), "Autochthonous Aryans? The Evidence from Old Indian and Iranian Texts", in Electronic Journal of Vedic Studies (EJVS) 7-3, pp. 1–93
Some archaeological evidence suggests iron was smelted in Zimbabwe and southeast Africa as early as the eighth century BC.Weeks, p. 33, quoting Cline, Walter (1937) "Mining and Metallurgy in Negro Africa", George Banta Publishing Co., Menasha, Wis., pp. 17–23. Iron working was introduced to Ancient Greece in the late 11th century BC, from which it spread quickly throughout Europe.Riederer, Josef; Wartke, Ralf-B. (2009) "Iron", Cancik, Hubert; Schneider, Helmuth (eds.): Brill's New Pauly, Brill.
The spread of ironworking in Central and Western Europe is associated with Celts expansion. According to Pliny the Elder, iron use was common in the Ancient Rome era. In the lands of what is now considered China, iron appears approximately 700–500 BC.Sawyer, Ralph D. and Sawyer, Mei-chün (1993). The Seven Military Classics of Ancient China. Boulder: Westview. . p. 10. Iron smelting may have been introduced into China through Central Asia.Pigott, Vincent C. (1999). The Archaeometallurgy of the Asian Old World. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. , p. 8. The earliest evidence of the use of a blast furnace in China dates to the 1st century AD, and cupola furnaces were used as early as the Warring States period (403–221 BC).Pigott, Vincent C. (1999). The Archaeometallurgy of the Asian Old World. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. , p. 191. Usage of the blast and cupola furnace remained widespread during the Tang dynasty and Song dynasty dynasties.
During the Industrial Revolution in Britain, Henry Cort began refining iron from pig iron to wrought iron (or bar iron) using innovative production systems. In 1783 he patented the puddling process for refining iron ore. It was later improved by others, including Joseph Hall.
In 1709, Abraham Darby I established a coke-fired blast furnace to produce cast iron, replacing charcoal, although continuing to use blast furnaces. The ensuing availability of inexpensive iron was one of the factors leading to the Industrial Revolution. Toward the end of the 18th century, cast iron began to replace wrought iron for certain purposes, because it was cheaper. Carbon content in iron was not implicated as the reason for the differences in properties of wrought iron, cast iron, and steel until the 18th century.
Since iron was becoming cheaper and more plentiful, it also became a major structural material following the building of the innovative first iron bridge in 1778. This bridge still stands today as a monument to the role iron played in the Industrial Revolution. Following this, iron was used in rails, boats, ships, aqueducts, and buildings, as well as in iron cylinders in . Railways have been central to the formation of modernity and ideas of progressSchivelbusch, G. (1986) The Railway Journey: Industrialization and Perception of Time and Space in the 19th Century. Oxford: Berg. and various languages refer to railways as iron road (e.g. French chemin de fer, German Eisenbahn, Turkish demiryolu, Russian железная дорога, CJK 鐵道, Vietnamese đường sắt).
New methods of producing it by carburizing bars of iron in the cementation process were devised in the 17th century. In the Industrial Revolution, new methods of producing bar iron without charcoal were devised and these were later applied to produce steel. In the late 1850s, Henry Bessemer invented a new steelmaking process, involving blowing air through molten pig iron, to produce mild steel. This made steel much more economical, thereby leading to wrought iron no longer being produced in large quantities.
An example of the importance of iron's symbolic role may be found in the German Campaign of 1813. Frederick William III commissioned then the first Iron Cross as military decoration. Berlin iron jewellery reached its peak production between 1813 and 1815, when the Prussian royal family urged citizens to donate gold and silver jewellery for military funding. The inscription Ich gab Gold für Eisen (I gave gold for iron) was used as well in later war efforts.Schmidt, Eva (1981) Der preußische Eisenkunstguss. (Art of Prussian cast iron) Technik, Geschichte, Werke, Künstler. Verlag Mann, Berlin,
This reaction raises the temperature to about 2000 °C. The carbon monoxide reduces the iron ore to metallic iron:
Some iron in the high-temperature lower region of the furnace reacts directly with the coke:
The flux removes silicaceous minerals in the ore, which would otherwise clog the furnace: The heat of the furnace decomposes the carbonates to calcium oxide, which reacts with any excess silica to form a slag composed of calcium silicate or other products. At the furnace's temperature, the metal and the slag are both molten. They collect at the bottom as two immiscible liquid layers (with the slag on top), that are then easily separated. The slag can be used as a material in road construction or to improve mineral-poor soils for agriculture.
Steelmaking thus remains one of the largest industrial contributors of CO2 emissions in the world.
Steel products often undergo various after they are forged to shape. Annealing consists of heating them to 700–800 °C for several hours and then gradual cooling. It makes the steel softer and more workable.Verhoeven, J.D. (1975) Fundamentals of Physical Metallurgy, Wiley, New York, p. 326
Natural gas is partially oxidized (with heat and a catalyst):
Iron ore is then treated with these gases in a furnace, producing solid sponge iron:
Silica is removed by adding a limestone flux as described above.
Alternatively pig iron may be made into steel (with up to about 2% carbon) or wrought iron (commercially pure iron). Various processes have been used for this, including , puddling furnaces, Bessemer converters, open hearth furnaces, basic oxygen furnaces, and electric arc furnaces. In all cases, the objective is to oxidize some or all of the carbon, together with other impurities. On the other hand, other metals may be added to make alloy steels.
The properties of pure iron are often used to calibrate measurements or to compare tests. However, the mechanical properties of iron are significantly affected by the sample's purity: pure, single crystals of iron are actually softer than aluminium, and the purest industrially produced iron (99.99%) has a hardness of 20–30 Brinell. The pure iron (99.9%~99.999%), especially called electrolytic iron, is industrially produced by electrolytic refining.
An increase in the carbon content will cause a significant increase in the hardness and tensile strength of iron. Maximum hardness of Rockwell scale is achieved with a 0.6% carbon content, although the alloy has low tensile strength. Because of the softness of iron, it is much easier to work with than its heavier congeners ruthenium and osmium.
Commercially available iron is classified based on purity and the abundance of additives. Pig iron has 3.5–4.5% carbon
"White" cast irons contain their carbon in the form of cementite, or iron carbide (Fe3C). This hard, brittle compound dominates the mechanical properties of white cast irons, rendering them hard, but unresistant to shock. The broken surface of a white cast iron is full of fine facets of the broken iron carbide, a very pale, silvery, shiny material, hence the appellation. Cooling a mixture of iron with 0.8% carbon slowly below 723 °C to room temperature results in separate, alternating layers of cementite and α-iron, which is soft and malleable and is called pearlite for its appearance. Rapid cooling, on the other hand, does not allow time for this separation and creates hard and brittle martensite. The steel can then be tempered by reheating to a temperature in between, changing the proportions of pearlite and martensite. The end product below 0.8% carbon content is a pearlite-αFe mixture, and that above 0.8% carbon content is a pearlite-cementite mixture.
In gray iron the carbon exists as separate, fine flakes of graphite, and also renders the material brittle due to the sharp edged flakes of graphite that produce stress concentration sites within the material. A newer variant of gray iron, referred to as ductile iron, is specially treated with trace amounts of magnesium to alter the shape of graphite to spheroids, or nodules, reducing the stress concentrations and vastly increasing the toughness and strength of the material.
Wrought iron contains less than 0.25% carbon but large amounts of slag that give it a fibrous characteristic. Wrought iron is more corrosion resistant than steel. It has been almost completely replaced by mild steel, which corrodes more readily than wrought iron, but is cheaper and more widely available. Carbon steel contains 2.0% carbon or less, with small amounts of manganese, sulfur, phosphorus, and silicon. contain varying amounts of carbon as well as other metals, such as chromium, vanadium, molybdenum, nickel, tungsten, etc. Their alloy content raises their cost, and so they are usually only employed for specialist uses. One common alloy steel, though, is stainless steel. Recent developments in ferrous metallurgy have produced a growing range of microalloyed steels, also termed 'HSLA steel' or high-strength, low alloy steels, containing tiny additions to produce high strengths and often spectacular toughness at minimal cost.
Alloys with high purity elemental makeups (such as alloys of electrolytic iron) have specifically enhanced properties such as ductility, tensile strength, toughness, fatigue limit, heat resistance, and corrosion resistance.
Apart from traditional applications, iron is also used for protection from ionizing radiation. Although it is lighter than another traditional protection material, lead, it is much stronger mechanically.
The main disadvantage of iron and steel is that pure iron, and most of its alloys, suffer badly from rust if not protected in some way, a cost amounting to over 1% of the world's economy. , galvanization, passivation, plastic coating and bluing are all used to protect iron from rust by excluding water and oxygen or by cathodic protection. The mechanism of the rusting of iron is as follows:
The electrolyte is usually iron(II) sulfate in urban areas (formed when atmospheric sulfur dioxide attacks iron), and salt particles in the atmosphere in seaside areas.
Iron catalysts are traditionally used in the Haber–Bosch process for the production of ammonia and the Fischer–Tropsch process for conversion of carbon monoxide to for fuels and lubricants. Powdered iron in an acidic medium is used in the Bechamp reduction, the conversion of nitrobenzene to aniline.
Iron(III) chloride finds use in water purification and sewage treatment, in the dyeing of cloth, as a coloring agent in paints, as an additive in animal feed, and as an etchant for copper in the manufacture of printed circuit boards. It can also be dissolved in alcohol to form tincture of iron, which is used as a medicine to stop bleeding in Domestic canary.
Iron(II) sulfate is used as a precursor to other iron compounds. It is also used to redox chromate in cement. It is used to fortify foods and treat iron deficiency anemia. Iron(III) sulfate is used in settling minute sewage particles in tank water. Iron(II) chloride is used as a reducing flocculating agent, in the formation of iron complexes and magnetic iron oxides, and as a reducing agent in organic synthesis.
Sodium nitroprusside is a drug used as a vasodilator. It is on the World Health Organization's List of Essential Medicines.
Examples of iron-containing proteins in higher organisms include hemoglobin, cytochrome (see high-valent iron), and catalase.
Microbial growth may be assisted by oxidation of iron(II) or by reduction of iron(III).
After uptake in human cells, iron storage is precisely regulated. A major component of this regulation is the protein transferrin, which binds iron ions absorbed from the duodenum and carries it in the bloodstream to cells. Transferrin contains Fe3+ in the middle of a distorted octahedron, bonded to one nitrogen, three oxygens and a chelating carbonate anion that traps the Fe3+ ion: it has such a high stability constant that it is very effective at taking up Fe3+ ions even from the most stable complexes. At the bone marrow, transferrin is reduced from Fe3+ to Fe2+ and stored as ferritin to be incorporated into hemoglobin.
The most commonly known and studied bioinorganic iron compounds (biological iron molecules) are the heme proteins: examples are hemoglobin, myoglobin, and cytochrome P450. These compounds participate in transporting gases, building enzymes, and transferring . Metalloproteins are a group of proteins with metal ion cofactors. Some examples of iron metalloproteins are ferritin and rubredoxin. Many enzymes vital to life contain iron, such as catalase, lipoxygenases, and IRE-BP.
Hemoglobin is an oxygen carrier that occurs in red blood cells and contributes their color, transporting oxygen in the arteries from the lungs to the muscles where it is transferred to myoglobin, which stores it until it is needed for the metabolic oxidation of glucose, generating energy. Here the hemoglobin binds to carbon dioxide, produced when glucose is oxidized, which is transported through the veins by hemoglobin (predominantly as bicarbonate anions) back to the lungs where it is exhaled. In hemoglobin, the iron is in one of four heme groups and has six possible coordination sites; four are occupied by nitrogen atoms in a porphyrin ring, the fifth by an imidazole nitrogen in a histidine residue of one of the protein chains attached to the heme group, and the sixth is reserved for the oxygen molecule it can reversibly bind to. When hemoglobin is not attached to oxygen (and is then called deoxyhemoglobin), the Fe2+ ion at the center of the heme group (in the hydrophobic protein interior) is in a high-spin configuration. It is thus too large to fit inside the porphyrin ring, which bends instead into a dome with the Fe2+ ion about 55 picometers above it. In this configuration, the sixth coordination site reserved for the oxygen is blocked by another histidine residue.
When deoxyhemoglobin picks up an oxygen molecule, this histidine residue moves away and returns once the oxygen is securely attached to form a hydrogen bond with it. This results in the Fe2+ ion switching to a low-spin configuration, resulting in a 20% decrease in ionic radius so that now it can fit into the porphyrin ring, which becomes planar. Additionally, this hydrogen bonding results in the tilting of the oxygen molecule, resulting in a Fe–O–O bond angle of around 120° that avoids the formation of Fe–O–Fe or Fe–O2–Fe bridges that would lead to electron transfer, the oxidation of Fe2+ to Fe3+, and the destruction of hemoglobin. This results in a movement of all the protein chains that leads to the other subunits of hemoglobin changing shape to a form with larger oxygen affinity. Thus, when deoxyhemoglobin takes up oxygen, its affinity for more oxygen increases, and vice versa. Myoglobin, on the other hand, contains only one heme group and hence this cooperative effect cannot occur. Thus, while hemoglobin is almost saturated with oxygen in the high partial pressures of oxygen found in the lungs, its affinity for oxygen is much lower than that of myoglobin, which oxygenates even at low partial pressures of oxygen found in muscle tissue. As described by the Bohr effect (named after Christian Bohr, the father of Niels Bohr), the oxygen affinity of hemoglobin diminishes in the presence of carbon dioxide.
Carbon monoxide and phosphorus trifluoride are poisonous to humans because they bind to hemoglobin similarly to oxygen, but with much more strength, so that oxygen can no longer be transported throughout the body. Hemoglobin bound to carbon monoxide is known as carboxyhemoglobin. This effect also plays a minor role in the toxicity of cyanide, but there the major effect is by far its interference with the proper functioning of the electron transport protein cytochrome a. The cytochrome proteins also involve heme groups and are involved in the metabolic oxidation of glucose by oxygen. The sixth coordination site is then occupied by either another imidazole nitrogen or a methionine sulfur, so that these proteins are largely inert to oxygen—with the exception of cytochrome a, which bonds directly to oxygen and thus is very easily poisoned by cyanide. Here, the electron transfer takes place as the iron remains in low spin but changes between the +2 and +3 oxidation states. Since the reduction potential of each step is slightly greater than the previous one, the energy is released step-by-step and can thus be stored in adenosine triphosphate. Cytochrome a is slightly distinct, as it occurs at the mitochondrial membrane, binds directly to oxygen, and transports protons as well as electrons, as follows:
Although the heme proteins are the most important class of iron-containing proteins, the iron–sulfur proteins are also very important, being involved in electron transfer, which is possible since iron can exist stably in either the +2 or +3 oxidation states. These have one, two, four, or eight iron atoms that are each approximately tetrahedrally coordinated to four sulfur atoms; because of this tetrahedral coordination, they always have high-spin iron. The simplest of such compounds is rubredoxin, which has only one iron atom coordinated to four sulfur atoms from cysteine residues in the surrounding peptide chains. Another important class of iron–sulfur proteins is the , which have multiple iron atoms. Transferrin does not belong to either of these classes.
The ability of sea to maintain their grip on rocks in the ocean is facilitated by their use of organometallic iron-based bonds in their protein-rich . Based on synthetic replicas, the presence of iron in these structures increased elastic modulus 770 times, tensile strength 58 times, and toughness 92 times. The amount of stress required to permanently damage them increased 76 times.
Iron provided by dietary supplements is often found as iron(II) fumarate, although iron(II) sulfate is cheaper and is absorbed equally well. Elemental iron, or reduced iron, despite being absorbed at only one-third to two-thirds the efficiency (relative to iron sulfate), is often added to foods such as breakfast cereals or enriched wheat flour. Iron is most available to the body when Chelation to amino acids and is also available for use as a common iron supplement. Glycine, the least expensive amino acid, is most often used to produce iron glycinate supplements.
The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL are defined the same as in the United States. For women the PRI is 13 mg/day ages 1517 years, 16 mg/day for women ages 18 and up who are premenopausal and 11 mg/day postmenopausal. For pregnancy and lactation, 16 mg/day. For men the PRI is 11 mg/day ages 15 and older. For children ages 1 to 14, the PRI increases from 7 to 11 mg/day. The PRIs are higher than the U.S. RDAs, with the exception of pregnancy. The EFSA reviewed the same safety question did not establish a UL.
Infants may require iron supplements if they are bottle-fed cow's milk. Frequent Blood donation are at risk of low iron levels and are often advised to supplement their iron intake.
For U.S. food and dietary supplement labeling purposes, the amount in a serving is expressed as a percent of Daily Value (%DV). For iron labeling purposes, 100% of the Daily Value was 18 mg, and remained unchanged at 18 mg. A table of the old and new adult daily values is provided at Reference Daily Intake.
The brain is resistant to acute iron deficiency due to the slow transport of iron through the blood brain barrier. Acute fluctuations in iron status (marked by serum ferritin levels) do not reflect brain iron status, but prolonged nutritional iron deficiency is suspected to reduce brain iron concentrations over time. In the brain, iron plays a role in oxygen transport, myelin synthesis, mitochondrial respiration, and as a cofactor for neurotransmitter synthesis and metabolism. Animal models of nutritional iron deficiency report biomolecular changes resembling those seen in Parkinson's and Huntington's disease. However, age-related accumulation of iron in the brain has also been linked to the development of Parkinson's.
Overdoses of ingested iron can cause excessive levels of free iron in the blood. High blood levels of free ferrous iron react with to produce highly reactive that can damage DNA, proteins, lipids, and other cellular components. Iron toxicity occurs when the cell contains free iron, which generally occurs when iron levels exceed the availability of transferrin to bind the iron. Damage to the cells of the gastrointestinal tract can also prevent them from regulating iron absorption, leading to further increases in blood levels. Iron typically damages cells in the heart, liver and elsewhere, causing adverse effects that include coma, metabolic acidosis, shock, liver failure, coagulopathy, long-term organ damage, and even death. Humans experience iron toxicity when the iron exceeds 20 milligrams for every kilogram of body mass; 60 milligrams per kilogram is considered a lethal dose. Overconsumption of iron, often the result of children eating large quantities of ferrous sulfate tablets intended for adult consumption, is one of the most common toxicological causes of death in children under six. The Dietary Reference Intake (DRI) sets the Tolerable Upper Intake Level (UL) for adults at 45 mg/day. For children under fourteen years old the UL is 40 mg/day.
The medical management of iron toxicity is complicated, and can include use of a specific chelation agent called deferoxamine to bind and expel excess iron from the body.
Some researchers in the 2000s suggested a link between low levels of iron in the blood and ADHD. A 2012 study found no such correlation.
Iron can enter marine systems through adjoining rivers and directly from the atmosphere. Once iron enters the ocean, it can be distributed throughout the water column through ocean mixing and through recycling on the cellular level. In the arctic, sea ice plays a major role in the store and distribution of iron in the ocean, depleting oceanic iron as it freezes in the winter and releasing it back into the water when thawing occurs in the summer. The iron cycle can fluctuate the forms of iron from aqueous to particle forms altering the availability of iron to primary producers. Increased light and warmth increases the amount of iron that is in forms that are usable by primary producers.
/ref>Nicholas A. Barnes, Stephen M.Godfrey, Nicholas Ho, Charles A.McAuliffe, Robin G.Pritchard; "Facile synthesis of a rare example of an iron(III) iodide complex, FeI3(AsMe3)2, from the reaction of Me3AsI2 with unactivated iron powder"
/ref>
Solution chemistry
> E0 = −0.447 V E0 = +0.77 V E0 = +2.20 V
> K = 10−3.05 mol dm−3 K = 10−3.26 mol dm−3 K = 10−2.91 mol dm−3
Coordination compounds
Organometallic compounds
Industrial uses
History
Development of iron metallurgy
Meteoritic iron
Wrought iron
Cast iron
Steel
Foundations of modern chemistry
Symbolic role
Laboratory routes
Main industrial route
Nowadays, the industrial production of iron or steel consists of two main stages. In the first stage, iron ore is redox with coke in a blast furnace, and the molten metal is separated from gross impurities such as . This stage yields an alloy – pig iron – that contains relatively large amounts of carbon. In the second stage, the amount of carbon in the pig iron is lowered by oxidation to yield wrought iron, steel, or cast iron. Other metals can be added at this stage to form .
+Iron production 2009 (million tonnes)
target="_blank" rel="nofollow"> Steel Statistical Yearbook 2010. World Steel Association
!Country!!Iron ore!!Pig iron!!Direct iron!!Steel
573.6 5.2 26.5 87.5 63.5 60.0 29.9 48.6 32.7
Blast furnace processing
Steelmaking
Direct iron reduction
Thermite process
Molten oxide electrolysis
Applications
+ Characteristic values of tensile strength (TS) and Brinell hardness (BH) of various forms of iron.
!Material
!TS
(MPa)
!BH
(Brinell scale)Iron whiskers 11000 Ausformed (hardened)
steel2930 850–1200 Martensite 2070 600 Bainite 1380 400 Pearlite 1200 350 cold forming iron 690 200 Small-grain iron 340 100 Carbon-containing iron 140 40 Pure, single-crystal iron 10 3
As structural material
Mechanical properties
Types of steels and alloys
Catalysts and reagents
Iron compounds
Biological and pathological role
Biochemistry
Nutrition
Diet
Dietary recommendations
Deficiency
Excess
ADHD
Cancer
Marine systems
See also
Bibliography
Further reading
External links
|
|