Product Code Database
Example Keywords: indie games -underpants $98
   » » Wiki: Ductility
Tag Wiki 'Ductility'.

demonstrates low ductility.]] Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure.

(1984). 9780201116908, Addison-Wesley. .
Ductility is an important consideration in engineering and manufacturing, defining a material's suitability for certain manufacturing operations (such as ) and its capacity to absorb mechanical overload.
(2021). 9780073398204, McGraw Hill. .
Materials that are generally described as ductile include and .

Malleability, a similar mechanical property, is characterized by a material's ability to deform plastically without failure under compressive stress. Historically, materials were considered malleable if they were amenable to forming by hammering or rolling. Lead is an example of a material which is, relatively, malleable but not ductile.

(1988). 9780486257426, Courier Dover Publications. .

Materials science
Ductility is especially important in , as materials that crack, break or shatter under stress cannot be manipulated using metal-forming processes such as , rolling, drawing or . Malleable materials can be formed cold using stamping or , whereas brittle materials may be or .

High degrees of ductility occur due to , which are found predominantly in metals; this leads to the common perception that metals are ductile in general. In metallic bonds are delocalized and shared between many atoms. The delocalized electrons allow metal atoms to slide past one another without being subjected to strong repulsive forces that would cause other materials to shatter.

The ductility of varies depending on the alloying constituents. Increasing the levels of decreases ductility. Many plastics and , such as , are also malleable. The most ductile metal is and the most malleable metal is .Vaccaro, John (2002) Materials handbook, Mc Graw-Hill handbooks, 15th ed.Schwartz, M. (2002) CRC encyclopedia of materials parts and finishes, 2nd ed. When highly stretched, such metals distort via formation, reorientation and migration of and without noticeable hardening.

Quantification of ductility
The quantities commonly used to define ductility in a tension test are percent elongation (sometimes denoted as \varepsilon_f) and reduction of area (sometimes denoted as q) at fracture.Dieter, G. (1986) Mechanical Metallurgy, McGraw-Hill, Fracture strain is the engineering strain at which a test specimen fractures during a . Percent elongation, or engineering strain at fracture, can be written as:
(2021). 9781305076761 .
(2021). 9780470419977 .

\%EL = \frac{final \ gage \ length - initial \ gage \ length}{initial \ gage \ length} = \frac{l_f - l_0}{l_0}*100

Percent reduction in area can be written as:

\%RA = \frac{change \ in \ area}{original \ area} = \frac{A_0 - A_f}{A_0}*100

where the area of concern is the cross-sectional area of the gage of the specimen.

According to Shigley's Mechanical Engineering Design

(2021). 9780073398204, McGraw Hill. .
. significant denotes about 5.0 percent elongation.

Ductile–brittle transition temperature
[[File:Ductility.svg|thumb|right|Schematic appearance of round metal bars after tensile testing.
(a) Brittle fracture
(b) Ductile fracture
(c) Completely ductile fracture]]

The ductile–brittle transition temperature (DBTT), nil ductility temperature (NDT), or nil ductility transition temperature of a metal is the temperature at which the fracture energy passes below a predetermined value (for steels typically 40 JJohn, Vernon (1992). Introduction to Engineering Materials, 3rd ed. New York: Industrial Press. . for a standard Charpy impact test). DBTT is important since, once a material is cooled below the DBTT, it has a much greater tendency to shatter on impact instead of bending or deforming (low temperature embrittlement). For example, exhibits good ductility at room temperature but shatters when impacted at sub-zero temperatures. DBTT is a very important consideration in selecting materials that are subjected to mechanical stresses. A similar phenomenon, the glass transition temperature, occurs with glasses and polymers, although the mechanism is different in these .

In some materials, the transition is sharper than others and typically requires a temperature-sensitive deformation mechanism. For example, in materials with a body-centered cubic (bcc) lattice the DBTT is readily apparent, as the motion of screw is very temperature sensitive because the rearrangement of the dislocation core prior to slip requires thermal activation. This can be problematic for steels with a high ferrite content. This famously resulted in serious hull cracking in Liberty ships in colder waters during World War II, causing many sinkings. DBTT can also be influenced by external factors such as neutron radiation, which leads to an increase in internal and a corresponding decrease in ductility and increase in DBTT.

The most accurate method of measuring the DBTT of a material is by fracture testing. Typically four point bend testing at a range of temperatures is performed on pre-cracked bars of polished material.

For experiments conducted at higher temperatures, activity increases. At a certain temperature, dislocations shield the crack tip to such an extent that the applied deformation rate is not sufficient for the stress intensity at the crack-tip to reach the critical value for fracture (KiC). The temperature at which this occurs is the ductile–brittle transition temperature. If experiments are performed at a higher strain rate, more dislocation shielding is required to prevent brittle , and the transition temperature is raised.

See also
  • Deformation
  • , which improves ductility in uniaxial tension by delaying the onset of instability
  • Strength of materials

External links

Page 1 of 1
Page 1 of 1


Pages:  ..   .. 
Items:  .. 


General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 


Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time