Product Code Database
Example Keywords: super mario -gloves $99-133
   » » Wiki: Ductility
Tag Wiki 'Ductility'.

Ductility is a measure of a material's ability to undergo significant plastic deformation before rupture, which may be expressed as percent elongation or percent area reduction from a tensile test. According to Shigley's Mechanical Engineering Design--10th Ed.

(2018). 9780073398204, McGraw Hill. .
. significant denotes about 5.0 percent elongation (Section 5.3, p. 233). See also Eq. 2-12, p. 50 for definitions of percent elongation and percent area reduction. Ductility is often characterized by the material's ability to be stretched into a wire.

From examination of data in Tables A20, A21, A22, A23, and A24 in Shigley's Mechanical Engineering Design--10th Edition for both ductile and brittle materials, it is possible to postulate a broader quantifiable definition of ductility that does not rely on percent elongation alone. In general, a ductile material must have a measurable yield strength, at which unrecoverable plastic deformation begins (see Yield_(engineering)), and also must satisfy one of the following conditions: either have an elongation to failure of at least 5%, and/or area reduction to rupture at least 20%, and/or true strain to rupture at least 10%.

, a similar property, is a material's ability to deform under compressive stress; this is often characterized by the material's ability to form a thin sheet by hammering or rolling. Both of these mechanical properties are aspects of plasticity, the extent to which a solid material can be plastically deformed without . Also, these material properties are dependent on temperature and pressure (investigated by Percy Williams Bridgman as part of his Nobel Prize-winning work on high pressures).

Ductility and malleability are not always coextensive – for instance, while has high ductility and malleability, has low ductility but high malleability.

(1988). 9780486257426, Courier Dover Publications. .
. The word ductility is sometimes used to encompass both types of plasticity. Includes definitions from American Heritage Dictionary of the English Language, Collins English Dictionary: Complete and Unabridged, American Heritage Science Dictionary, and WordNet 3.0.

Materials science

Ductility is especially important in , as materials that crack, break or shatter under stress cannot be manipulated using metal-forming processes such as , rolling, and drawing. Malleable materials can be formed cold using stamping or , whereas brittle materials may be or .

High degrees of ductility occur due to , which are found predominantly in metals, leading to the common perception that metals are ductile in general. In metallic bonds are delocalized and shared between many atoms. The delocalized electrons allow metal atoms to slide past one another without being subjected to strong repulsive forces that would cause other materials to shatter.

Ductility can be quantified by the fracture strain \varepsilon_f, which is the engineering strain at which a test specimen fractures during a uniaxial . Another commonly used measure is the reduction of area at fracture q.Dieter, G. (1986) Mechanical Metallurgy, McGraw-Hill, The ductility of varies depending on the alloying constituents. Increasing the levels of decreases ductility. Many plastics and , such as , are also malleable. The most ductile metal is and the most malleable metal is gold.Vaccaro, John (2002) Materials handbook, Mc Graw-Hill handbooks, fifteenth editionSchwartz, M. (2002) CRC encyclopedia of materials parts and finishes, second edition

Ductile–brittle transition temperature
[[File:Ductility.svg|thumb|right|Schematic appearance of round metal bars after tensile testing.
(a) Brittle fracture
(b) Ductile fracture
(c) Completely ductile fracture]]

The ductile–brittle transition temperature (DBTT), nil ductility temperature (NDT), or nil ductility transition temperature of a metal is the temperature at which the fracture energy passes below a predetermined value (for steels typically 40 JJohn, Vernon (1992). Introduction to Engineering Materials, 3rd ed. New York: Industrial Press. . for a standard Charpy impact test). DBTT is important since, once a material is cooled below the DBTT, it has a much greater tendency to shatter on impact instead of bending or deforming. For example, exhibits good ductility at room temperature but shatters when impacted at sub-zero temperatures. DBTT is a very important consideration in selecting materials that are subjected to mechanical stresses. A similar phenomenon, the glass transition temperature, occurs with glasses and polymers, although the mechanism is different in these amorphous materials.

In some materials, the transition is sharper than others and typically requires a temperature-sensitive deformation mechanism. For example, in materials with a body-centered cubic (bcc) lattice the DBTT is readily apparent, as the motion of screw is very temperature sensitive because the rearrangement of the dislocation core prior to slip requires thermal activation. This can be problematic for steels with a high ferrite content. This famously resulted in serious hull cracking in Liberty ships in colder waters during World War II, causing many sinkings. DBTT can also be influenced by external factors such as neutron radiation, which leads to an increase in internal and a corresponding decrease in ductility and increase in DBTT.

The most accurate method of measuring the DBTT of a material is by fracture testing. Typically four point bend testing at a range of temperatures is performed on pre-cracked bars of polished material.

For experiments conducted at higher temperatures, dislocation activity increases. At a certain temperature, dislocations shield the crack tip to such an extent that the applied deformation rate is not sufficient for the stress intensity at the crack-tip to reach the critical value for fracture (KiC). The temperature at which this occurs is the ductile–brittle transition temperature. If experiments are performed at a higher strain rate, more dislocation shielding is required to prevent brittle fracture, and the transition temperature is raised.

See also
  • Deformation
  • , which improves ductility in uniaxial tension by delaying the onset of instability
  • Strength of materials

External links

Page 1 of 1


Pages:  ..   .. 
Items:  .. 


General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 


Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time