Iguanodon ( ; meaning 'iguana-tooth'), named in 1825, is a genus of dinosaur. While many species found worldwide have been classified in the genus Iguanodon, dating from the Late Jurassic to Early Cretaceous, taxonomic revision in the early 21st century has defined Iguanodon to be based on one well-substantiated species: I. bernissartensis, which lived during the Barremian to early Aptian ages of the Early Cretaceous in Belgium, Germany, England, and Spain, between about 126 and 122 million years ago. Iguanodon was a large, bulky herbivory, measuring up to in length and in body mass. Distinctive features include large thumb spikes, which were possibly used for defense against predation, combined with long prehensile fifth fingers able to forage for food.
The genus was named in 1825 by English geologist Gideon Mantell, based on fossil specimens found in England and was given the species name I. anglicus. Iguanodon was the second type of dinosaur formally named based on fossil specimens, after Megalosaurus. Together with Megalosaurus and Hylaeosaurus, it was one of the three genera originally used to define . The genus Iguanodon belongs to the larger group Iguanodontia, along with the duck-billed Hadrosauridae. The taxonomy of this genus continues to be a topic of study as new species are named or long-standing ones reassigned to other genera.
In 1878, new, far more complete remains of Iguanodon were discovered in Belgium and studied by Louis Dollo. These were given the new species I. bernissartensis. In the early 21st century it became understood that the remains referred to as Iguanodon in England belonged to four different species (including I. bernissartensis) that were not closely related to each other, which were subsequently split off into Mantellisaurus, Barilium and Hypselospinus. It was also found that the originally described type species of Iguanodon, I. anglicus is now a nomen dubium, and not valid. Thus the name " Iguanodon" became fixed around the well known species based primarily on the Belgian specimens. In 2015, a second valid species, I. galvensis, was named, based on fossils found in the Iberian Peninsula.
Scientific understanding of Iguanodon has evolved over time as new information has been obtained from . The numerous specimens of this genus, including nearly complete skeletons from two well-known , have allowed researchers to make informed hypotheses regarding many aspects of the living animal, including feeding, movement, and social behaviour. As one of the first scientifically well-known dinosaurs, Iguanodon has occupied a small but notable place in the public's perception of dinosaurs, its artistic representation changing significantly in response to new interpretations of its remains.
In May 1822 he first presented the herbivorous teeth to the Royal Society of London but the members, among them William Buckland, dismissed them as fish teeth or the incisors of a rhinoceros from a Tertiary stratum. On 23 June 1823 Charles Lyell showed some to Georges Cuvier, during a soiree in Paris, but the famous French naturalist at once dismissed them as those of a rhinoceros. Though the very next day Cuvier retracted, Lyell reported only the dismissal to Mantell, who became rather diffident about the issue. In 1824 Buckland described Megalosaurus and was on that occasion invited to visit Mantell's collection. Seeing the bones on 6 March he agreed that these were of some giant saurian—though still denying it was a herbivore. Emboldened nevertheless, Mantell again sent some teeth to Cuvier, who answered on 22 June 1824 that he had determined that they were reptilian and quite possibly belonged to a giant herbivore. In a new edition that year of his Recherches sur les Ossemens Fossiles Cuvier admitted his earlier mistake, leading to an immediate acceptance of Mantell, and his new saurian, in scientific circles. Mantell tried to corroborate his theory further by finding a modern-day parallel among extant reptiles. In September 1824 he visited the Royal College of Surgeons but at first failed to find comparable teeth. However, assistant-curator Samuel Stutchbury recognised that they resembled those of an iguana he had recently prepared, albeit twenty times longer.
In recognition of the resemblance of the teeth to those of the iguana, Mantell decided to name his new animal Iguanodon or 'iguana-tooth', from iguana and the Ancient Greek word ὀδών ( odon, odontos or 'tooth'). Based on allometry, he estimated that the creature might have been up to long, more than the length of Megalosaurus. His initial idea for a name was Iguana-saurus ('Iguana lizard'), but his friend William Daniel Conybeare suggested that that name was more applicable to the iguana itself, so a better name would be Iguanoides ('Iguana-like') or Iguanodon.Cadbury, D. (2000). The Dinosaur Hunters. Fourth Estate:London, 384 p. . He neglected to add a specific name to form a proper binomial, but one was supplied in 1829 by Friedrich Holl: I. anglicum, which was later emended to I. anglicus.
Mantell sent a letter detailing his discovery to the local Portsmouth Philosophical Society in December 1824, several weeks after settling on a name for the fossil creature. The letter was read to members of the Society at a meeting on 17 December, and a report was published in the Hampshire Telegraph the following Monday, 20 December, which announced the name, misspelled as "Iguanadon". Mantell formally published his findings on 10 February 1825, when he presented a paper on the remains to the Royal Society.
A more complete specimen of a similar animal was discovered in a quarry in Maidstone, Kent, in 1834 (lower Lower Greensand Formation), which Mantell soon acquired. He was led to identify it as an Iguanodon based on its distinctive teeth. The Maidstone slab (NHMUK PV OR 3791) was used in the first skeletal reconstructions and artistic renderings of Iguanodon, but due to its incompleteness, Mantell made some mistakes, the most famous of which was the placement of what he thought was a horn on the nose. The discovery of much better specimens in later years revealed that the horn was actually a modified thumb. Still encased in rock, the Maidstone skeleton is currently displayed at the Natural History Museum in London. The borough of Maidstone commemorated this find by adding an Iguanodon as a supporter to their coat of arms in 1949. This specimen has become linked with the name I. mantelli, a species named in 1832 by Christian Erich Hermann von Meyer in place of I. anglicus, but it actually comes from a different rock formation than the original I. mantelli/ I. anglicus material. The Maidstone specimen, also known as Gideon Mantell's "Mantel-piece", and formally labelled NHMUK 3741 was subsequently excluded from Iguanodon. It is classified as cf. Mantellisaurus by McDonald (2012); as cf. Mantellisaurus atherfieldensis by Norman (2012); and made the holotype of a separate species Mantellodon by Paul (2012), but this is considered dubious and it is generally considered a specimen of Mantellisaurus
At the same time, tension began to build between Mantell and Richard Owen, an ambitious scientist with much better funding and society connections in the turbulent worlds of Reform Act-era British politics and science. Owen, a firm creationism, opposed the early versions of evolution ("transmutationism") then being debated and used what he would soon coin as dinosaurs as a weapon in this conflict. With the paper describing Dinosauria, he scaled down dinosaurs from lengths of over , determined that they were not simply giant lizards, and put forward that they were advanced and mammal-like, characteristics given to them by God; according to the understanding of the time, they could not have been "transmuted" from reptiles to mammal-like creatures.Torrens, Hugh. "Politics and Paleontology". The Complete Dinosaur, 175–190.
In 1849, a few years before his death in 1852, Mantell realised that iguanodonts were not heavy, Pachydermata-like animals, as Owen was putting forward, but had slender forelimbs. However, since his passing left him unable to participate in the creation of the Crystal Palace dinosaur sculptures, Owen's vision of the dinosaurs became that seen by the public for decades. With Benjamin Waterhouse Hawkins, he had nearly two dozen lifesize of various prehistoric animals built out of concrete sculpted over a steel and brick framework; two iguanodonts (based on the Maidstone specimen), one standing and one resting on its belly, were included. Before the sculpture of the standing iguanodont was completed, he held a banquet for twenty inside it.Norman, David B. The Illustrated Encyclopedia of Dinosaurs. p. 11.
Dollo's specimens allowed him to show that Owen's prehistoric pachyderms were not correct for Iguanodon. He instead modelled the skeletal mounts after the cassowary and wallaby, and put the spike that had been on the nose firmly on the thumb. His reconstruction would prevail for a long period of time, but would later be discounted.
Excavations at the quarry were stopped in 1881, although it was not exhausted of fossils, as recent drilling operations have shown. Abstracts of Papers, Sixty-Third Annual Meeting. During World War I, when the town was occupied by German Empire, preparations were made to reopen the mine for palaeontology, and Otto Jaekel was sent from Berlin to supervise. Just as the first fossiliferous layer was about to be uncovered, however, the German army surrendered and had to withdraw. Further attempts to reopen the mine were hindered by financial problems and were stopped altogether in 1921 when the mine flooded.Cordier, S (2017). De botten van de Borinage. De iguanodons van Bernissart van 125 miljoen voor Christus tot vandaag. Antwerpen: Vrijdag .
Iguanodon was not part of the initial work of the dinosaur renaissance that began with the description of Deinonychus in 1969, but it was not neglected for long. David B. Weishampel's work on ornithopod feeding mechanisms provided a better understanding of how it fed, and David B. Norman's work on numerous aspects of the genus has made it one of the best-known dinosaurs. In addition, a further find of numerous disarticulated Iguanodon bones in Nehden, Nordrhein-Westphalen, Germany, has provided evidence for gregariousness in this genus, as the animals in this area find appear to have been killed by . At least 15 individuals, from long, have been found here, most of the individuals belong to the related Mantellisaurus (described as I. atherfieldensis, at that time believed to be another species of Iguanodon). but some are of I. bernissartensis.
One major revision to Iguanodon brought by the Renaissance would be another re-thinking of how to reconstruct the animal. A major flaw with Dollo's reconstruction was the bend he introduced into the tail. This organ was more or less straight, as shown by the skeletons he was excavating, and the presence of ossified tendons. In fact, to get the bend in the tail for a more wallaby or kangaroo-like posture, the tail would have had to be broken. With its correct, straight tail and back, the animal would have walked with its body held horizontal to the ground, arms in place to support the body if needed.
In 2010, David Norman split the Valanginian species I. dawsoni and I. fittoni into Barilium and Hypselospinus respectively. After Norman 2010, over half a dozen new genera were named off English " Iguanodon" material. Carpenter and Ishida in 2010 named Proplanicoxa, Torilion and Sellacoxa while Gregory S. Paul in 2012 named Darwinsaurus, Huxleysaurus and Mantellodon and Macdonald et al. in 2012 named Kukufeldia. These species named after Norman 2010 are not considered valid and are considered various junior synonyms of Mantellisaurus, Barilium and Hypselospinus.
In 2011, a new genus Delapparentia was named for a specimen in Spain that was originally thought to belong to I. bernissartensis. The previous identification was subsequently reaffirmed in a new analysis of individual variation in the Belgian specimens, finding that the Delapparentia specimen was within the range of I. bernissartensis. In 2015 a new species of Iguanodon, I. galvensis, was named based on material including 13 juvenile (perinate) individuals found in the Camarillas Formation near Galve, Spain. In 2017 a new study was done of I. galvensis, with further evidence of distinctiveness from I. bernissartensis including several new autapomorphies. It was also found that the Delapparentia holotype (which is also from the Camarillas Formation) was not distinguishable from either I. bernissartensis or I. galvensis.
With the advent of cladistics, Iguanodontidae as traditionally construed was shown to be paraphyly, and these animals are recognised to fall at different points in relation to hadrosaurs on a cladogram, instead of in a single distinct clade. Essentially, the modern concept of Iguanodontidae currently includes only Iguanodon. Groups like Iguanodontoidea are still used as unranked clades in the scientific literature, though many traditional iguanodontids are now included in the superfamily Hadrosauroidea. Iguanodon lies between Camptosaurus and Ouranosaurus in cladograms, and is probably descended from a camptosaur-like animal. At one point, Jack Horner suggested, based mostly on skull synapomorphy, that hadrosaurids actually formed two more distantly related groups, with Iguanodon on the line to the flat-headed Saurolophinae, and Ouranosaurus on the line to the crested lambeosaurinae, but his proposal has been rejected.
The cladogram below follows an analysis by Andrew McDonald, 2012.
I. anglicus was the original type species, but the lectotype was based on a single tooth and only partial remains of the species have been recovered since. In March 2000, the International Commission on Zoological Nomenclature changed the type species to the much better known I. bernissartensis, with the new holotype being IRSNB 1534. The original Iguanodon tooth is held at Te Papa Tongarewa, the national museum of New Zealand in Wellington, although it is not on display. The fossil arrived in New Zealand following the move of Gideon Mantell's son Walter there; after the elder Mantell's death, his fossils went to Walter.
The skull was structured in such a way that as it closed, the bones holding the teeth in the upper jaw would bow out. This would cause the lower surfaces of the upper jaw teeth to rub against the upper surface of the lower jaw's teeth, grinding anything caught in between and providing an action that is the rough equivalent of mammalian chewing. Because the teeth were always replaced, the animal could have used this mechanism throughout its life, and could eat tough plant material. Additionally, the front ends of the animal's jaws were toothless and tipped with bony nodes, both upper and lower, providing a rough margin that was likely covered and lengthened by a keratinous material to form a cropping beak for biting off and shoots. Its food gathering would have been aided by its flexible little finger, which could have been used to manipulate objects, unlike the other fingers.
Exactly what Iguanodon ate with its well-developed jaws is not known. The size of the larger species, such as I. bernissartensis, would have allowed them access to food from ground level to tree leaf at high. A diet of Equisetum, , and pinophyta was suggested by David Norman, although iguanodonts in general have been tied to the advance of flowering plant plants in the Cretaceous due to the dinosaurs' inferred low-browsing habits. Angiosperm growth, according to this hypothesis, would have been encouraged by iguanodont feeding because gymnosperms would be removed, allowing more space for the weed-like early angiosperms to grow.Bakker, R.T. "When Dinosaurs Invented Flowers". The Dinosaur Heresies, 179–198 The evidence is not conclusive, though. Whatever its exact diet, due to its size and abundance, Iguanodon is regarded as a dominant medium to large herbivore for its ecosystem. In England, this included the small predator Aristosuchus, larger predators Eotyrannus, Baryonyx, and Neovenator, low-feeding herbivores Hypsilophodon and Valdosaurus, fellow "iguanodontid" Mantellisaurus, the armoured herbivore Polacanthus, and like Pelorosaurus.Weishampel, D.B., Barrett, P.M., Coria, R.A., Le Loeuff, J., Xu Xing, Zhao Xijin, Sahni, A., Gomani, E.M.P., and Noto, C.R. "Dinosaur Distribution". The Dinosauria, 517–606.
During his re-examination of Iguanodon, David Norman was able to show that this posture was unlikely, because the long tail was stiffened with ossified tendons. To get the tripodal pose, the tail would literally have to be broken. Putting the animal in a horizontal posture makes many aspects of the arms and pectoral girdle more understandable. For example, the hand is relatively immobile, with the three central fingers grouped together, bearing hoof-like Phalanx bone, and able to hyperextend. This would have allowed them to bear weight. The wrist is also relatively immobile, and the arms and shoulder bones robust. These features all suggest that the animal spent time on all fours.
Furthermore, it appears that Iguanodon became more quadrupedal as it got older and heavier; juvenile I. bernissartensis have shorter arms than adults (60% of hindlimb length versus 70% for adults). When walking as a quadruped, the animal's hands would have been held so that the Hand faced each other, as shown by iguanodontian trackways and the anatomy of this genus's arms and hands. The three-toed pes ( foot) of Iguanodon was relatively long, and when walking, both the hand and the foot would have been used in a digitigrade fashion (walking on the fingers and toes). The maximum speed of Iguanodon has been estimated at , which would have been as a biped; it would not have been able to Horse gallop as a quadruped.
Large three-toed footprints are known in Early Cretaceous rocks of England, particularly Wealden Group beds on the Isle of Wight, and these were originally difficult to interpret. Some authors associated them with dinosaurs early on. In 1846, E. Tagert went so far as to assign them to an ichnotaxon he named Iguanodon, and Samuel Beckles noted in 1854 that they looked like bird tracks, but might have come from dinosaurs. The identity of the trackmakers was greatly clarified upon the discovery in 1857 of the hind leg of a young Iguanodon, with distinctly three-toed feet, showing that such dinosaurs could have made the tracks. Despite the lack of direct evidence, these tracks are often attributed to Iguanodon. A trackway in England shows what may be an Iguanodon moving on all fours, but the foot prints are poor, making a direct connection difficult. Tracks assigned to the ichnogenus Iguanodon are known from locations including places in Europe where the body fossil Iguanodon is known, to Spitsbergen, Svalbard, Norway.
This thumb is typically interpreted as a close-quarter stiletto-like weapon against predators, although it could also have been used to break into and , or against other Iguanodon. One author has suggested that the spike was attached to a venom gland, but this has not been accepted, as the spike was not hollow, nor were there any grooves on the spike for conducting venom.
An argument against herding is that juvenile remains are very uncommon at this site, unlike modern cases with herd mortality. They more likely were the periodic victims of flash floods whose carcasses accumulated in a lake or marshy setting. The Nehden find, however, with its greater span of individual ages, more even mix of Dollodon or Mantellisaurus to Iguanodon bernissartensis, and confined geographic nature, may record mortality of herding animals migrating through rivers.
There is no evidence that Iguanodon was sexually dimorphic (with one sex appreciably different from the other). At one time, it was suggested that the Bernissart I. "mantelli", or I. atherfieldensis ( Dollodon and Mantellisaurus, respectively) represented a sex, possibly female, of the larger and more robust, possibly male, I. bernissartensis. However, this is not supported today. A 2017 analysis showed that I. bernissartensis does exhibit a large level of individual variation in both its limbs (scapula, humerus, thumb claw, ilium, ischium, femur, tibia) and spinal column (axis, sacrum, tail vertebrae). Additionally, this analysis found that individuals of I. bernissartensis generally seemed to fall into two categories based on whether their tail vertebrae bore a furrow on the bottom, and whether their thumb claws were large or small.
Several Film have featured Iguanodon. In the 2000 Disney animated film Dinosaur, an Iguanodon named Aladar served as the protagonist with three other iguanodonts as other main and minor characters are Neera, Kron and Bruton. A loosely related ride of the same name at Disney's Animal Kingdom is based around bringing an Iguanodon back to the present. Iguanodon is one of the three dinosaur genera that inspired Godzilla; the other two were Tyrannosaurus rex and Stegosaurus. Iguanodon has also made appearances in some of the many The Land Before Time films, as well as episodes of the television series.
Aside from appearances in movies, Iguanodon has also been featured on the television documentary miniseries Walking with Dinosaurs (1999) produced by the BBC (along with then-undescribed Dakotadon) and played a starring role in Sir Arthur Conan Doyle's book The Lost World as well as featuring in the 2015 documentary Dinosaur Britain. It also was present in Bob Bakker's Raptor Red (1995), as a Utahraptor prey item. A asteroid belt asteroid, , has been named 9941 Iguanodon in honour of the genus.
Because it is both one of the first dinosaurs described and one of the best-known dinosaurs, Iguanodon has been well-placed as a barometer of changing public and scientific perceptions on dinosaurs. Its reconstructions have gone through three stages: the quadrupedal horn-snouted reptile satisfied the Victorian era, then a bipedal but still fundamentally reptilian animal using its tail to prop itself up dominated the early 20th century, but was slowly overturned during the 1960s by its current, more agile and dynamic representation, able to shift from two legs to all fours.
Bernissart mine discoveries and Dollo's new reconstruction
Turn of the century and the Dinosaur Renaissance
21st century research and the splitting of the genus
Description
Classification and evolution
Species
Species currently accepted as valid
Reassigned species of Iguanodon
Species reassigned to Iguanodon
Dubious species
Palaeobiology
Feeding
Posture and movement
Thumb spike
Possible social behaviour
Paleopathology
In popular culture
Notes
External links
|
|