A frog is any member of a diverse and largely semiaquatic group of short-bodied, amphibian composing the order Anura (coming from the Ancient Greek ἀνούρα, literally 'without tail'). Frog species with rough skin texture due to wart-like tend to be called , but the distinction between frogs and toads is informal and purely cosmetic, not from taxonomy or evolutionary history.
Frogs are widely distributed, ranging from the tropics to subarctic regions, but the greatest concentration of species diversity is in tropical rainforest and associated . They account for around 88% of extant amphibian species, and are one of the five most diverse vertebrate orders. The oldest fossil "proto-frog" Triadobatrachus is known from the Early Triassic of Madagascar (250Myr), but molecular clock suggests their divergence from other amphibians may extend further back to the Permian, 265million years ago.
Adult frogs have a stout body, protruding , anteriorly-attached tongue, limbs folded underneath, and no tail (the "tail" of is an extension of the male cloaca). Frogs have skin, with ranging from distasteful to toxic. Their skin varies in colour from well- dappled brown, grey and green, to vivid patterns of bright red or yellow and black to show toxicity and aposematism. Adult frogs live in both fresh water and on dry land; some species are adapted for burrowing or arboreal. As their skin is semi-permeable, making them susceptible to dehydration, they either live in moist ecological niche or have special to deal with drier habitats. Frogs produce a wide range of vocalisations, particularly in their breeding season, and exhibit many different kinds of complex ethology to attract mates, to fend off predators and to generally survive.
Being oviparous , frogs typically spawning their in bodies of water. The eggs then hatch into fully aquatic called , which have tails and internal . A few species lay eggs on land or bypass the tadpole stage altogether. Tadpoles have highly specialised rasping mouth parts suitable for herbivorous, omnivorous or planktivorous diets. The life cycle is completed when they metamorphosis into semiaquatic capable of terrestrial locomotion and hybrid respiration using both aided by buccal pumping and gas exchange across the skin, and the larval tail regresses into an internal urostyle. Adult frogs generally have a carnivorous diet consisting of small invertebrates, especially , but omnivorous species exist and a few feed on plant matter. Frogs generally seize and ingest food by protruding their adhesive tongue and then swallow the item whole, often using their and extraocular muscles to help pushing down the throat, and their digestive system is extremely efficient at converting what they eat into body mass. Being trophic level consumers, both tadpoles and adult frogs are an important food source for other and a vital part of the food web dynamics of many of the world's .
Frogs (especially frog legs) are eaten by as food in many , and also have many cultural roles in literature, symbolism and religion. They are bioindicator, with declines in frog populations considered early warning signs of environmental degradation. Global frog populations and diversities have declined significantly since the 1950s. More than one third of species are considered to be threatened with , and over 120 are believed to have become extinct since the 1980s. Frog malformations are on the rise as an emerging fungus disease, chytridiomycosis, has spread around the world. Conservation biologists are working to solve these problems.
The origins of the word frog are uncertain and debated. The word is first attested in Old English as frogga, but the usual Old English word for the frog was frosc (with variants such as frox and forsc), and it is agreed that the word frog is somehow related to this. Old English frosc remained in dialectal use in English as frosh and frosk into the nineteenth century, and is paralleled widely in other Germanic languages, with examples in the modern languages including German language Frosch, Norwegian frosk, Icelandic froskur, and Dutch language . These words allow reconstruction of a Common Germanic ancestor *froskaz.Jerzy Wełna, ' Metathetic and Non-Metathetic Form Selection in Middle English', Studia Anglica Posnaniensia, 30 (2002), 501–18 (p. 504). The third edition of the Oxford English Dictionary finds that the etymology of *froskaz is uncertain, but agrees with arguments that it could plausibly derive from a Proto-Indo-European base along the lines of *preu, meaning 'jump'.
How Old English frosc gave rise to frogga is, however, uncertain, as the development does not involve a regular Sound change. Instead, it seems that there was a trend in Old English to coin nicknames for animals ending in - g, with examples—themselves all of uncertain etymology—including dog, hog, pig, stag, and . Frog appears to have been adapted from frosc as part of this trend.
Meanwhile, the word toad, first attested as Old English tādige, is unique to English and is likewise of uncertain etymology. It is the basis for the word tadpole, first attested as Middle English taddepol, apparently meaning 'toad-head'.
The Anura include all modern frogs and any fossil species that fit within the anuran definition. The characteristics of anuran adults include: 9 or fewer presacral vertebrae, the presence of a urostyle formed of fused vertebrae, no tail, a long and forward-sloping ilium, shorter fore limbs than hind limbs, radius and ulna fused, tibia and fibula fused, elongated , absence of a prefrontal bone, presence of a hyoid bone, a Mandible without teeth (with the exception of Gastrotheca guentheri) consisting of three pairs of bones (angulosplenial, dentary, and mentomeckelian, with the last pair being absent in Pipoidea),Duellman, William E. an unsupported tongue, lymph spaces underneath the skin, and a muscle, the protractor lentis, attached to the lens of the eye. The anuran larva or tadpole has a single central respiratory spiracle and mouthparts consisting of beaks and denticles.
Frogs and toads are broadly classified into three suborders: Archaeobatrachia, which includes four families of primitive frogs; Mesobatrachia, which includes five families of more evolutionary intermediate frogs; and Neobatrachia, by far the largest group, which contains the remaining families of modern frogs, including most common species throughout the world. The suborder Neobatrachia is further divided into the two superfamilies Hyloidea and Ranoidea. This classification is based on such morphological features as the number of vertebrae, the structure of the pectoral girdle, and the morphology of tadpoles. While this classification is largely accepted, relationships among families of frogs are still debated.
Some species of anurans hybridise readily. For instance, the edible frog ( Pelophylax esculentus) is a hybrid between the pool frog ( P. lessonae) and the marsh frog ( P. ridibundus). The fire-bellied toads Bombina bombina and B. variegata are similar in forming hybrids. These are less fertile than their parents, giving rise to a hybrid zone where the hybrids are prevalent.
In 2008, Gerobatrachus hottoni, a Temnospondyli with many frog- and salamander-like characteristics, was discovered in Texas. It dated back 290 million years and was hailed as a missing link, a Stem group batrachian close to the common ancestor of frogs and salamanders, consistent with the widely accepted hypothesis that frogs and salamanders are more closely related to each other (forming a clade called Batrachia) than they are to caecilians. However, others have suggested that Gerobatrachus hottoni was only a Dissorophoidea temnospondyl unrelated to extant amphibians.
Salientia (Latin salire ( salio), "to jump") is the name of the total group that includes modern frogs in the order Anura as well as their close fossil relatives, the "proto-frogs" or "stem-frogs". The common features possessed by these proto-frogs include 14 Vertebral column (modern frogs have eight or 9), a long and forward-sloping ilium in the pelvis, the presence of a Parietal bone, and a Mandible without teeth. The earliest known amphibians that were more closely related to frogs than to salamanders are Triadobatrachus massinoti, from the early Triassic period of Madagascar (about 250 million years ago), and Czatkobatrachus polonicus, from the Early Triassic of Poland (about the same age as Triadobatrachus). The skull of Triadobatrachus is frog-like, being broad with large eye sockets, but the fossil has features diverging from modern frogs. These include a longer body with more vertebrae. The tail has separate vertebrae unlike the fused urostyle or coccyx in modern frogs. The tibia and fibula bones are also separate, making it probable that Triadobatrachus was not an efficient leaper. A 2019 study has noted the presence of Salientia from the Chinle Formation, and suggested that anurans might have first appeared during the Late Triassic.
On the basis of fossil evidence, the earliest known "true frogs" that fall into the anuran lineage proper all lived in the early Jurassic period.
According to genetic studies, the families Hyloidea, Microhylidae, and the clade Natatanura (comprising about 88% of living frogs) diversified simultaneously some 66 million years ago, soon after the Cretaceous–Paleogene extinction event associated with the Chicxulub impactor. All origins of arboreality (e.g. in Hyloidea and Natatanura) follow from that time and the resurgence of forest that occurred afterwards.
Frog fossils have been found on all of the Earth's continents. In 2020, it was announced that 40 million year old helmeted frog fossils had been discovered by a team of vertebrate palaeontologists in Seymour Island on the Antarctic Peninsula, indicating that this region was once home to frogs related to those now living in South American Nothofagus forest.
The muscular system has been similarly modified. The hind limbs of ancestral frogs presumably contained pairs of muscles which would act in opposition (one muscle to flex the knee, a different muscle to extend it), as is seen in most other limbed animals. However, in modern frogs, almost all muscles have been modified to contribute to the action of jumping, with only a few small muscles remaining to bring the limb back to the starting position and maintain posture. The muscles have also been greatly enlarged, with the main leg muscles accounting for over 17% of the total mass of frogs.
Many frogs have webbed feet and the degree of webbing is directly proportional to the amount of time the species spends in the water. The completely aquatic African dwarf frog ( Hymenochirus sp.) has fully webbed toes, whereas those of White's tree frog ( Litoria caerulea), an arboreal species, are only a quarter or half webbed. Exceptions include in the Hylidae and Rhacophoridae, which also have fully webbed toes used in gliding.
Tree frog have pads located on the ends of their toes to help grip vertical surfaces. These are not suction pads, the surface consisting instead of columnar cells with flat tops with small gaps between them lubricated by mucous glands. When the frog applies pressure, the cells adhere to irregularities on the surface and the grip is maintained through Capillarity. This allows the frog to climb on smooth surfaces, but the system does not function efficiently when the pads are excessively wet.
In many arboreal frogs, a small "intercalary structure" on each toe increases the surface area touching the substrate. Furthermore, many arboreal frogs have hip joints that allow both hopping and walking. Some frogs that live high in trees even possess an elaborate degree of webbing between their toes. This allows the frogs to "parachute" or make a controlled glide from one position in the canopy to another.
Ground-dwelling frogs generally lack the adaptations of aquatic and arboreal frogs. Most have smaller toe pads, if any, and little webbing. Some burrowing frogs such as Couch's spadefoot ( Scaphiopus couchii) have a flap-like toe extension on the hind feet, a tubercle often referred to as a spade, that helps them to burrow.
Sometimes during the tadpole stage, one of the developing rear legs is eaten by a predator such as a dragonfly nymph. In some cases, the full leg still grows, but in others it does not, although the frog may still live out its normal lifespan with only three limbs. Occasionally, a parasitic flatworm ( Ribeiroia ondatrae) digs into the rear of a tadpole, causing a rearrangement of the limb bud cells and the frog develops one or more extra legs.
Being cold-blooded, frogs have to adopt suitable behaviour patterns to regulate their temperature. To warm up, they can move into the sun or onto a warm surface; if they overheat, they can move into the shade or adopt a stance that exposes the minimum area of skin to the air. This posture is also used to prevent water loss and involves the frog squatting close to the substrate with its hands and feet tucked under its chin and body. The colour of a frog's skin is used for thermoregulation. In cool damp conditions, the colour will be darker than on a hot dry day. The grey foam-nest tree frog ( Chiromantis xerampelina) is even able to turn white to minimise the chance of overheating.
Many frogs are able to absorb water and oxygen directly through the skin, especially around the pelvic area, but the permeability of a frog's skin can also result in water loss. Glands located all over the body exude mucus which helps keep the skin moist and reduces evaporation. Some glands on the hands and chest of males are specialised to produce sticky secretions to aid in amplexus. Similar glands in tree frogs produce a glue-like substance on the adhesive discs of the feet. Some arboreal frogs reduce water loss by having a waterproof layer of skin, and several South American species coat their skin with a waxy secretion. Other frogs have adopted behaviours to conserve water, including becoming nocturnal and resting in a water-conserving position. Some frogs may also rest in large groups with each frog pressed against its neighbours. This reduces the amount of skin exposed to the air or a dry surface, and thus reduces water loss. Woodhouse's toad ( Bufo woodhousii), if given access to water after confinement in a dry location, sits in the shallows to rehydrate. The male hairy frog ( Trichobatrachus robustus) has dermal papillae projecting from its lower back and thighs, giving it a bristly appearance. These contain blood vessels and are thought to increase the area of the skin available for respiration.
Some species have Osteoderm embedded in the skin, a trait that appears to have evolved independently several times. In certain other species, the skin at the top of the head is compacted and the connective tissue of the dermis is co-ossified with the bones of the skull (exostosis).
Camouflage is a common defensive mechanism in frogs. Features such as warts and are usually on ground-dwelling frogs, for whom smooth skin would not provide such effective camouflage. Certain frogs change colour between night and day, as light and moisture stimulate the pigment cells and cause them to expand or contract. Some are even able to control their skin texture. The Pacific tree frog ( Pseudacris regilla) has green and brown morphs, plain or spotted, and changes colour depending on the time of year and general background colour. The Wood frog ( Lithobates sylvaticus) uses disruptive coloration including black eye markings similar to voids between leaves, bands of the dorsal skin (dorsolateral dermal plica) similar to a leaf midrib as well as stains, spots and leg stripes similar to fallen leaf features.
Frogs have three-chambered , a feature they share with . Oxygenated blood from the lungs and de-oxygenated blood from the respiring tissues enter the heart through separate atria. When these chambers contract, the two blood streams pass into a common ventricle before being pumped via a spiral valve to the appropriate vessel, the aorta for oxygenated blood and pulmonary artery for deoxygenated blood.
Some species of frog have adaptations that allow them to survive in oxygen deficient water. The Titicaca water frog ( Telmatobius culeus) is one such species and has wrinkly skin that increases its surface area to enhance gas exchange. It normally makes no use of its rudimentary lungs but will sometimes raise and lower its body rhythmically while on the lake bed to increase the flow of water around it.
The food then moves through the oesophagus into the stomach where digestive enzymes are added and it is churned up. It then proceeds to the small intestine (duodenum and ileum) where most digestion occurs. Pancreatic juice from the pancreas, and bile, produced by the liver and stored in the gallbladder, are secreted into the small intestine, where the fluids digest the food and the nutrients are absorbed. The food residue passes into the large intestine where excess water is removed and the wastes are passed out through the cloaca.
Although adapted to terrestrial life, frogs resemble freshwater fish in their inability to conserve body water effectively. When they are on land, much water is lost by evaporation from the skin. The excretory system is similar to that of mammals and there are two that remove nitrogenous products from the blood. Frogs produce large quantities of dilute urine in order to flush out toxic products from the kidney tubules. The nitrogen is excreted as ammonia by tadpoles and aquatic frogs but mainly as urea, a less toxic product, by most terrestrial adults. A few species of tree frog with little access to water excrete the even less toxic uric acid. The urine passes along paired to the urinary bladder from which it is vented periodically into the cloaca. All bodily wastes exit the body through the cloaca which terminates in a cloacal vent.
When frogs mate, the male climbs on the back of the female and wraps his fore limbs round her body, either behind the front legs or just in front of the hind legs. This position is called amplexus and may be held for several days. The male frog has certain hormone-dependent secondary sexual characteristics. These include the development of special pads on his thumbs in the breeding season, to give him a firm hold. The grip of the male frog during amplexus stimulates the female to release eggs, usually wrapped in jelly, as spawn. In many species the male is smaller and slimmer than the female. Males have vocal cords and make a range of croaks, particularly in the breeding season, and in some species they also have to amplify the sound.
The distant vision of a frog is better than its near vision. Calling frogs will quickly become silent when they see an intruder or even a moving shadow but the closer an object is, the less well it is seen. When a frog shoots out its tongue to catch an insect it is reacting to a small moving object that it cannot see well and must line it up precisely beforehand because it shuts its eyes as the tongue is extended. Although it was formerly debated, more recent research has shown that frogs can see in colour, even in very low light.
The main function of calling is for male frogs to attract mates. Males may call individually or there may be a chorus of sound where numerous males have converged on breeding sites. In many frog species, such as the common tree frog ( Polypedates leucomystax), females reply to males' calls, which acts to reinforce reproductive activity in a breeding colony. Female frogs prefer males that produce sounds of greater intensity and lower frequency, attributes that stand out in a crowd. The rationale for this is thought to be that by demonstrating his prowess, the male shows his fitness to produce superior offspring.
A different call is emitted by a male frog or unreceptive female when mounted by another male. This is a distinct chirruping sound and is accompanied by a vibration of the body. Tree frogs and some non-aquatic species have a rain call that they make on the basis of humidity cues prior to a shower. Many species also have a territorial call that is used to drive away other males. All of these calls are emitted with the mouth of the frog closed. A distress call, emitted by some frogs when they are in danger, is produced with the mouth open resulting in a higher-pitched call. It is typically used when the frog has been grabbed by a predator and may serve to distract or disorient the attacker so that it releases the frog.
Many species of frog have deep calls. The croak of the American bullfrog ( Rana catesbiana) is sometimes written as "jug o' rum".
At the other extreme, the striped burrowing frog ( Cyclorana alboguttata) regularly Aestivation during the hot, dry season in Australia, surviving in a dormant state without access to food and water for nine or ten months of the year. It burrows underground and curls up inside a protective cocoon formed by its shed skin. Researchers at the University of Queensland have found that during aestivation, the metabolism of the frog is altered and the operational efficiency of the mitochondria is increased. This means that the limited amount of energy available to the comatose frog is used in a more efficient manner. This survival mechanism is only useful to animals that remain completely unconscious for an extended period of time and whose energy requirements are low because they are cold-blooded and have no need to generate heat. Other research showed that, to provide these energy requirements, muscles atrophy, but hind limb muscles are preferentially unaffected. Frogs have been found to have upper critical temperatures of around 41 degrees Celsius.
Slow-motion photography shows that the muscles have passive flexibility. They are first stretched while the frog is still in the crouched position, then they are contracted before being stretched again to launch the frog into the air. The fore legs are folded against the chest and the hind legs remain in the extended, streamlined position for the duration of the jump. In some extremely capable jumpers, such as the Cuban tree frog ( Osteopilus septentrionalis) and the northern leopard frog ( Lithobates pipiens), the peak power exerted during a jump can exceed that which the muscle is theoretically capable of producing. When the muscles contract, the energy is first transferred into the stretched tendon which is wrapped around the ankle bone. Then the muscles stretch again at the same time as the tendon releases its energy like a catapult to produce a powerful acceleration beyond the limits of muscle-powered acceleration. A similar mechanism has been documented in and .
Early hatching of froglets can have negative effects on frog jumping performance and overall locomotion. The hindlimbs are unable to completely form, which results in them being shorter and much weaker relative to a normal hatching froglet. Early hatching froglets may tend to depend on other forms of locomotion more often, such as swimming and walking.
The Kassina maculata ( Kassina maculata) has short, slim hind limbs unsuited to jumping. It can move fast by using a running gait in which the two hind legs are used alternately. Slow-motion photography shows, unlike a horse that can trot or gallop, the frog's gait remained similar at slow, medium, and fast speeds. This species can also climb trees and shrubs, and does so at night to catch insects. The Indian skipper frog ( Euphlyctis cyanophlyctis) has broad feet and can run across the surface of the water for several metres (yards).
The spadefoot toads of North America are also adapted to underground life. The Plains spadefoot toad ( Spea bombifrons) is typical and has a flap of keratinised bone attached to one of the Metatarsus of the hind feet which it uses to dig itself backwards into the ground. As it digs, the toad wriggles its hips from side to side to sink into the loose soil. It has a shallow burrow in the summer from which it emerges at night to forage. In winter, it digs much deeper and has been recorded at a depth of . The tunnel is filled with soil and the toad hibernates in a small chamber at the end. During this time, urea accumulates in its tissues and water is drawn in from the surrounding damp soil by osmosis to supply the toad's needs. Spadefoot toads are explosive breeders, all emerging from their burrows at the same time and converging on temporary pools, attracted to one of these by the calling of the first male to find a suitable breeding location.
The burrowing frogs of Australia have a different lifestyle. The western spotted frog ( Heleioporus albopunctatus) digs a burrow beside a river or in the bed of an ephemeral stream and regularly emerges to forage. Mating takes place and eggs are laid in a foam nest inside the burrow. The eggs partially develop there but do not hatch until they are submerged following heavy rainfall. The tadpoles then swim out into the open water and rapidly complete their development. Madagascan burrowing frogs are less fossorial and mostly bury themselves in leaf litter. One of these, the green burrowing frog ( Scaphiophryne marmorata), has a flattened head with a short snout and well-developed metatarsal tubercles on its hind feet to help with excavation. It also has greatly enlarged terminal discs on its fore feet that help it to clamber around in bushes. It breeds in temporary pools that form after rains.
Among prolonged breeders, males usually arrive at the breeding site first and remain there for some time whereas females tend to arrive later and depart soon after they have spawned. This means that males outnumber females at the water's edge and defend territories from which they expel other males. They advertise their presence by calling, often alternating their croaks with neighbouring frogs. Larger, stronger males tend to have deeper calls and maintain higher quality territories. Females select their mates at least partly on the basis of the depth of their voice. In some species there are satellite males who have no territory and do not call. They may intercept females that are approaching a calling male or take over a vacated territory. Calling is an energy-sapping activity. Sometimes the two roles are reversed and a calling male gives up its territory and becomes a satellite.
In explosive breeders, the first male that finds a suitable breeding location, such as a temporary pool, calls loudly and other frogs of both sexes converge on the pool. Explosive breeders tend to call in unison creating a chorus that can be heard from far away. The spadefoot toads ( Scaphiopus spp.) of North America fall into this category. Mate selection and courtship is not as important as speed in reproduction. In some years, suitable conditions may not occur and the frogs may go for two or more years without breeding. Some female New Mexico spadefoot toads ( Spea multiplicata) only spawn half of the available eggs at a time, perhaps retaining some in case a better reproductive opportunity arises later.
At the breeding site, the male mounts the female and grips her tightly round the body. Typically, amplexus takes place in the water, the female releases her eggs and the male covers them with sperm; fertilisation is external. In many species such as the Great Plains toad ( Bufo cognatus), the male restrains the eggs with his back feet, holding them in place for about three minutes. Members of the West African genus Nimbaphrynoides are unique among frogs in that they are Viviparity; Limnonectes larvaepartus, Eleutherodactylus jasperi and members of the genus Nectophrynoides are the only frogs known to be Ovoviviparity. In these species, fertilisation is internal and females give birth to fully developed juvenile frogs, except L. larvaepartus, which give birth to tadpoles.
In certain species, such as the wood frog ( Rana sylvatica), Symbiosis unicellular green algae are present in the gelatinous material. It is thought that these may benefit the developing larvae by providing them with extra oxygen through photosynthesis. The interior of globular egg clusters of the Wood Frog has also been found to be up to 6 °C (11 °F) warmer than the surrounding water and this speeds up the development of the larvae. The larvae developing in the eggs can detect vibrations caused by nearby predatory wasps or snakes, and will hatch early to avoid being eaten. In general, the length of the egg stage depends on the species and the environmental conditions. Aquatic eggs normally hatch within one week when the capsule splits as a result of released by the developing larvae.
Direct development, where eggs hatch into juveniles like small adults, is also known in many frogs, for example, Ischnocnema henselii, Eleutherodactylus coqui, and Raorchestes ochlandrae and Raorchestes chalazodes.
From early in its development, a gill pouch covers the tadpole's gills and front legs. The lungs soon start to develop and are used as an accessory breathing organ. Some species go through metamorphosis while still inside the egg and hatch directly into small frogs. Tadpoles lack true teeth, but the jaws in most species have two elongated, parallel rows of small, structures called keradonts in their upper jaws. Their lower jaws usually have three rows of keradonts surrounded by a horny beak, but the number of rows can vary and the exact arrangements of mouth parts provide a means for species identification. In the Pipidae, with the exception of Hymenochirus, the tadpoles have paired anterior barbels, which make them resemble small catfish. Their tails are stiffened by a notochord, but does not contain any bony or cartilaginous elements except for a few vertebrae at the base which forms the urostyle during metamorphosis. This has been suggested as an adaptation to their lifestyles; because the transformation into frogs happens very fast, the tail is made of soft tissue only, as bone and cartilage take a much longer time to be broken down and absorbed. The tail fin and tip is fragile and will easily tear, which is seen as an adaptation to escape from predators which try to grasp them by the tail.
Tadpoles are typically herbivore, feeding mostly on , including filtered from the water through the . Some species are carnivorous at the tadpole stage, eating insects, smaller tadpoles, and fish. The Cuban tree frog ( Osteopilus septentrionalis) is one of a number of species in which the tadpoles can be Cannibalism. Tadpoles that develop legs early may be eaten by the others, so late developers may have better long-term survival prospects.
Tadpoles are highly vulnerable to being eaten by fish, , predatory , and birds, particularly , such as and and . Some tadpoles, including those of the cane toad ( Rhinella marina), are poisonous. The tadpole stage may be as short as a week in explosive breeders or it may last through one or more winters followed by metamorphosis in the spring.
Frogs are primary predators and an important part of the food web. Being Ectotherm, they make efficient use of the food they eat with little energy being used for metabolic processes, while the rest is transformed into biomass. They are themselves eaten by secondary predators and are the primary terrestrial consumers of invertebrates, most of which feed on plants. By reducing herbivory, they play a part in increasing the growth of plants and are thus part of a delicately balanced ecosystem.
Little is known about the longevity of frogs and toads in the wild, but some can live for many years. Skeletochronology is a method of examining bones to determine age. Using this method, the ages of mountain yellow-legged frogs ( Rana muscosa) were studied, the phalanges of the toes showing seasonal lines where growth slows in winter. The oldest frogs had ten bands, so their age was believed to be 14 years, including the four-year tadpole stage. Captive frogs and toads have been recorded as living for up to 40 years, an age achieved by a European common toad ( Bufo bufo). The cane toad ( Rhinella marina) has been known to survive 24 years in captivity, and the American bullfrog ( Rana catesbeiana) 14 years. Frogs from temperate climates hibernate during the winter, and four species are known to be able to withstand freezing during this time, including the wood frog ( Rana sylvatica).
In small pools, predators are mostly absent and competition between tadpoles becomes the variable that constrains their survival. Certain frog species avoid this competition by making use of smaller (water-filled leaf or small woody cavities) as sites for depositing a few tadpoles. While these smaller rearing sites are free from competition, they also lack sufficient nutrients to support a tadpole without parental assistance. Frog species that changed from the use of larger to smaller phytotelmata have evolved a strategy of providing their offspring with nutritive but unfertilised eggs. The female strawberry poison-dart frog ( Oophaga pumilio) lays her eggs on the forest floor. The male frog guards them from predation and carries water in his cloaca to keep them moist. When they hatch, the female moves the tadpoles on her back to a water-holding bromeliad or other similar water body, depositing just one in each location. She visits them regularly and feeds them by laying one or two unfertilised eggs in the phytotelma, continuing to do this until the young are large enough to undergo metamorphosis. The granular poison frog ( Oophaga granulifera) looks after its tadpoles in a similar way.
Many other diverse forms of parental care are seen in frogs. The tiny male Colostethus subpunctatus stands guard over his egg cluster, laid under a stone or log. When the eggs hatch, he transports the tadpoles on his back to a temporary pool, where he partially immerses himself in the water and one or more tadpoles drop off. He then moves on to another pool. The male common midwife toad ( Alytes obstetricans) carries the eggs around with him attached to his hind legs. He keeps them damp in dry weather by immersing himself in a pond, and prevents them from getting too wet in soggy vegetation by raising his hindquarters. After three to six weeks, he travels to a pond and the eggs hatch into tadpoles. The tungara frog ( Physalaemus pustulosus) builds a floating nest from foam to protect its eggs from predation. The foam is made from and , and seems to have antimicrobial properties. Several pairs of frogs may form a colonial nest on a previously built raft. The eggs are laid in the centre, followed by alternate layers of foam and eggs, finishing with a foam capping.
Some frogs protect their offspring inside their own bodies. Both male and female ( Assa darlingtoni) guard their eggs, which are laid on the ground. When the eggs hatch, the male lubricates his body with the jelly surrounding them and immerses himself in the egg mass. The tadpoles wriggle into skin pouches on his side, where they develop until they metamorphose into juvenile frogs. The female gastric-brooding frog ( Rheobatrachus sp.) from Australia, now probably extinct, swallows her fertilised eggs, which then develop inside her stomach. She ceases to feed and stops secreting stomach acid. The tadpoles rely on the yolks of the eggs for nourishment. After six or seven weeks, they are ready for metamorphosis. The mother regurgitates the tiny frogs, which hop away from her mouth. The female Darwin's frog ( Rhinoderma darwinii) from Chile lays up to 40 eggs on the ground, where they are guarded by the male. When the tadpoles are about to hatch, they are engulfed by the male, which carries them around inside his much-enlarged vocal sac. Here they are immersed in a frothy, viscous liquid that contains some nourishment to supplement what they obtain from the yolks of the eggs. They remain in the sac for seven to ten weeks before undergoing metamorphosis, after which they move into the male's mouth and emerge.
The skin of many frogs contains mild toxic substances called to make them unpalatable to potential predators. Most toads and some frogs have large poison glands, the , located on the sides of their heads behind the eyes and other glands elsewhere on their bodies. These glands secrete mucus and a range of toxins that make frogs slippery to hold and distasteful or poisonous. If the noxious effect is immediate, the predator may cease its action and the frog may escape. If the effect develops more slowly, the predator may learn to avoid that species in future. Poisonous frogs tend to advertise their toxicity with bright colours, an adaptive strategy known as aposematism. The poison dart frogs in the family Dendrobatidae do this. They are typically red, orange, or yellow, often with contrasting black markings on their bodies. Allobates zaparo is not poisonous, but mimics the appearance of two different toxic species with which it shares a common range in an effort to deceive predators. Other species, such as the European fire-bellied toad ( Bombina bombina), have their warning colour underneath. They "flash" this when attacked, adopting a pose that exposes the vivid colouring on their bellies.
Some frogs, such as the poison dart frogs, are especially toxic. The native peoples of South America extract poison from these frogs to apply to their weapons for hunting, although few species are toxic enough to be used for this purpose. At least two non-poisonous frog species in tropical America ( Eleutherodactylus gaigei and Lithodytes lineatus) Batesian mimicry the colouration of dart poison frogs for self-protection. Some frogs obtain poisons from the ants and other arthropods they eat. Others, such as the Australian ( Pseudophryne corroboree and Pseudophryne pengilleyi), can synthesize the themselves. The chemicals involved may be irritants, , seizure, neurotoxin or . Many predators of frogs have become adapted to tolerate high levels of these poisons, but other creatures, including humans who handle the frogs, may be severely affected.
Some frogs use bluff or deception. The European common toad ( Bufo bufo) adopts a characteristic stance when attacked, inflating its body and standing with its hindquarters raised and its head lowered. The bullfrog ( Rana catesbeiana) crouches down with eyes closed and head tipped forward when threatened. This places the parotoid glands in the most effective position, the other glands on its back begin to ooze noxious secretions and the most vulnerable parts of its body are protected. Another tactic used by some frogs is to "scream", the sudden loud noise tending to startle the predator. The grey tree frog ( Hyla versicolor) makes an explosive sound that sometimes repels the shrew Blarina brevicauda. Although toads are avoided by many predators, the common garter snake ( Thamnophis sirtalis) regularly feeds on them. The strategy employed by juvenile American toads ( Bufo americanus) on being approached by a snake is to crouch down and remain immobile. This is usually successful, with the snake passing by and the toad remaining undetected. If it is encountered by the snake's head, however, the toad hops away before crouching defensively.
Many environmental scientists believe amphibians, including frogs, are good biological indicators of broader ecosystem health because of their intermediate positions in food chains, their permeable skins, and typically biphasic lives (aquatic larvae and terrestrial adults). It appears that species with both aquatic eggs and larvae are most affected by the decline, while those with direct development are the most resistant.
Frog mutations and genetic defects have increased since the 1990s. These often include missing legs or extra legs. Various causes have been identified or hypothesized, including an increase in Ultraviolet affecting the spawn on the surface of ponds, chemical contamination from pesticides and fertilizers, and parasites such as the trematode Ribeiroia ondatrae. Probably all these are involved in a complex way as , environmental factors contributing to rates of disease, and vulnerability to attack by parasites. Malformations impair mobility and the individuals may not survive to adulthood. An increase in the number of frogs eaten by birds may actually increase the likelihood of parasitism of other frogs, because the trematode's complex lifecycle includes the Planorbidae and several intermediate hosts such as birds.
In a few cases, captive breeding programs have been established and have largely been successful. The World Association of Zoos and Aquariums named 2008 as the "Year of the Frog" in order to draw attention to the conservation issues faced by them.
The cane toad ( Rhinella marina) is a very adaptable species native to South and Central America. In the 1930s, it was introduced into Puerto Rico, and later various other islands in the Pacific and Caribbean region, as a biological pest control agent. In 1935, 3000 toads were liberated in the sugar cane fields of Queensland, Australia, in an attempt to control such as Dermolepida albohirtum, the larvae of which damage and kill the canes. Initial results in many of these countries were positive, but it later became apparent that the toads upset the ecological balance in their new environments. They bred freely, competed with native frog species, ate bees and other harmless native invertebrates, had few predators in their adopted habitats, and poisoned pets, carnivorous birds, and mammals. In many of these countries, they are now regarded both as pests and invasive species, and scientists are looking for a biological method to control them.
The mountain chicken frog, so-called as it tastes of chicken, is now endangered, in part due to human consumption, and was a major food choice of the . Raccoon, Virginia opossum, partridges, prairie chicken, and frogs were among the fare Mark Twain recorded as part of American cuisine.
Frogs are used for in high school and university anatomy classes, often first being injected with coloured substances to enhance contrasts among the biological systems. This practice is declining due to animal welfare concerns, and "digital frogs" are now available for virtual dissection.
Frogs have served as Animal testing throughout the history of science. Eighteenth-century biologist Luigi Galvani discovered the link between electricity and the nervous system by studying frogs. He created one of the first tools for measuring electric current out of a frog leg. In 1852, H. F. Stannius used a frog's heart in a procedure called a Stannius ligature to demonstrate the ventricle and atria beat independently of each other and at different rates. The African clawed frog or platanna ( Xenopus laevis) was first widely used in laboratories in pregnancy tests in the first half of the 20th century. A sample of urine from a pregnant woman injected into a female frog induces it to lay , a discovery made by English zoologist Lancelot Hogben. This is because a hormone, human chorionic gonadotropin, is present in substantial quantities in the urine of women during pregnancy. In 1952, Robert Briggs and Thomas J. King cloned a frog by somatic cell nuclear transfer. This same technique was later used to create Dolly the sheep, and their experiment was the first time a successful nuclear transplantation had been accomplished in higher animals.
Frogs are used in cloning research and other branches of embryology. Although alternative pregnancy tests have been developed, biologists continue to use Xenopus as a model organism in developmental biology because their embryos are large and easy to manipulate, they are readily obtainable, and can easily be kept in the laboratory. Xenopus laevis is increasingly being displaced by its smaller relative, Xenopus tropicalis, which reaches its reproductive age in five months rather than the one to two years for X. laevis, thus facilitating faster studies across generations.
Genomes of Xenopus laevis, X. tropicalis, Rana catesbeiana, Rhinella marina, and Nanorana parkeri have been sequenced and deposited in the NCBI Genome database.
It has long been suspected that pre-Columbian used a toxic secretion produced by the cane toad as a hallucinogen, but more likely they used substances secreted by the Colorado River toad ( Bufo alvarius). These contain bufotenin (5-MeO-DMT), a psychoactive compound that has been used in modern times as a recreational drug. Typically, the skin secretions are dried and then smoked. Illicit drug use by licking the skin of a toad has been reported in the media, but this may be an urban myth.
Exudations from the skin of the golden poison frog ( Phyllobates terribilis) are traditionally used by native Colombians to poison the darts they use for hunting. The tip of the projectile is rubbed over the back of the frog and the dart is launched from a blowgun. The combination of the two alkaloid toxins batrachotoxin and homobatrachotoxin is so powerful, one frog contains enough poison to kill an estimated 22,000 mice. Two other species, the Kokoe poison dart frog ( Phyllobates aurotaenia) and the black-legged dart frog ( Phyllobates bicolor) are also used for this purpose. These are less toxic and less abundant than the golden poison frog. They are impaled on pointed sticks and may be heated over a fire to maximise the quantity of poison that can be transferred to the dart.
Evolution
Phylogeny
Morphology and physiology
Feet and legs
Skin
Respiration and circulation
Digestion and excretion
Reproductive system
Nervous system
Sight
Hearing
Call
Torpor
Locomotion
Jumping
Walking and running
Swimming
Burrowing
Climbing
Gliding
Life history
Reproduction
Life cycle
Eggs / frogspawn
Tadpoles
Metamorphosis
Adults
Parental care
Defence
Distribution
Conservation
Human uses
Culinary
Scientific research
Pharmaceutical
Cultural significance
Further reading
External links
Media
|
|