Feathers are epidermal growths that form a distinctive outer covering, or plumage, on both Bird (bird) and some non-avian and other . They are the most complex integumentary structures found in and an example of a complex evolutionary novelty. They are among the characteristics that distinguish the extant Aves from other living groups.
Although feathers cover most of the bird's body, they arise only from certain well-defined tracts on the skin. They aid in flight, thermal insulation, and waterproofing. In addition, coloration helps in communication and crypsis. The study of feathers is called plumology (or plumage science).
People use feathers in many ways that are practical, cultural, and religious. Feathers are both soft and excellent at trapping heat; thus, they are sometimes used in high-class bedding, especially , , and . They are also used as filling for winter clothing and outdoor bedding, such as quilted coats and . Goose and eider Down feather have great loft, the ability to expand from a compressed, stored state to trap large amounts of compartmentalized, insulating air. Feathers of large birds (most often Goose) have been and are used to make quill pens. Historically, the plume hunting has endangered some species and helped to contribute to the extinction of others. Today, feathers used in fashion and in military headdresses and clothes are obtained as a waste product of poultry farming, including , goose, turkeys, , and . These feathers are dyed and manipulated to enhance their appearance, as poultry feathers are naturally often dull in appearance compared to the feathers of wild birds.
quill, which were early pens used for writing, were made from feathers. The word pen itself is derived from the Latin penna, meaning feather. The French word plume can mean feather, quill, or pen.
Hatchling birds of some species have a special kind of natal down feathers (neossoptiles) which are pushed out when the normal feathers (teleoptiles) emerge.
Flight feathers are stiffened so as to work against the air in the downstroke but yield in other directions. It has been observed that the orientation pattern of β-keratin fibers in the feathers of flying birds differs from that in flightless birds: the fibers are better aligned along the shaft axis direction towards the tip, and the lateral walls of rachis region show structure of crossed fibers.
are peculiar in their habit of ingesting their own feathers and feeding them to their young. Observations on their diet of fish and the frequency of feather eating suggest that ingesting feathers, particularly down from their flanks, aids in forming easily ejectable pellets.
Most feather pigments are (brown and beige , black and grey ) and (red, yellow, orange); other pigments occur only in certain taxa – the yellow to red (found in some ) and the red turacin and green turacoverdin (porphyrin pigments found only in ).
Structural coloration is involved in the production of blue colors, iridescence, most ultraviolet reflectance and in the enhancement of pigmentary colors. Structural iridescence has been reported in fossil feathers dating back 40 million years. White feathers lack pigment and scatter light diffusely; albinism in birds is caused by defective pigment production, though structural coloration will not be affected (as can be seen, for example, in blue-and-white ).
The blues and bright greens of many are produced by constructive interference of light reflecting from different layers of structures in feathers. In the case of green plumage, in addition to yellow, the specific feather structure involved is called by some the Dyck texture. Melanin is often involved in the absorption of light; in combination with a yellow pigment, it produces a dull olive-green.
In some birds, feather colors may be created, or altered, by secretions from the uropygial gland, also called the preen gland. The yellow bill colors of many hornbills are produced by such secretions. It has been suggested that there are other color differences that may be visible only in the ultraviolet region, but studies have failed to find evidence. The oil secretion from the uropygial gland may also have an inhibitory effect on feather bacteria.
The reds, orange and yellow colors of many feathers are caused by various carotenoids. Carotenoid-based pigments might be honest signals of fitness because they are derived from special diets and hence might be difficult to obtain, and/or because carotenoids are required for immune function and hence sexual displays come at the expense of health.
A bird's feathers undergo wear and tear and are replaced periodically during the bird's life through . New feathers, known when developing as pin feather, depending on the stage of growth, are formed through the same follicles from which the old ones were fledged. The presence of melanin in feathers increases their resistance to abrasion. One study notes that melanin based feathers were observed to degrade more quickly under bacterial action, even compared to unpigmented feathers from the same species, than those unpigmented or with carotenoid pigments. However, another study the same year compared the action of bacteria on pigmentations of two song sparrow species and observed that the darker pigmented feathers were more resistant; the authors cited other research also published in 2004 that stated increased melanin provided greater resistance. They observed that the greater resistance of the darker birds confirmed Gloger's rule.
Although sexual selection plays a major role in the development of feathers, in particular, the color of the feathers it is not the only conclusion available. New studies are suggesting that the unique feathers of birds are also a large influence on many important aspects of avian behavior, such as the height at which different species build their nests. Since females are the prime caregivers, evolution has helped select females to display duller colors down so that they may blend into the nesting environment. The position of the nest and whether it has a greater chance of being under predation has exerted constraints on female birds' plumage. A species of bird that nests on the ground, rather than the canopy of the trees, will need to have much duller colors in order not to attract attention to the nest. The height study found that birds that nest in the canopies of trees often have many more predator attacks due to the brighter color of feathers that the female displays. Another influence of evolution that could play a part in why feathers of birds are so colorful and display so many patterns could be due to that birds developed their bright colors from the vegetation and flowers that thrive around them. Birds develop their bright colors from living around certain colors. Most bird species often blend into their environment, due to some degree of camouflage, so if the species habitat is full of colors and patterns, the species would eventually evolve to blend in to avoid being eaten. Birds' feathers show a large range of colors, even exceeding the variety of many plants, leaf, and flower colors.
The most well-known example of ornamental feathers used in mating is male Peafowl ( Pavo cristatus). Males sport a long train of covert feathers with distinct eyespot patterns, which are coupled with a vigorous display in the courtship process. When performing these displays, males flash their train in a fanning motion, showing their plumage off to females.
The evolutionary origin of the peacock’s ornamental feathers and display remains unclear, with multiple theories proposing a combination of factors. In a study observing peacock display behavior, captive male peacocks had the length of their trains, the length of their torsi, and the density of the eyespots measured. They were then released into enclosures with female peacocks, with their mating success measured in successful copulations. The results showed that female choice was not influenced by train size, but by eyespot density. This suggests that male peacocks’ elaborate feathers and displays evolved as a result of female choice, particularly favoring males with more eyespot patterns.
An analysis of feathers discovered in Burmese amber revealed unusual coloration along the rachis, suggesting they bore striking color patterns. Early ornamental feathers in the genus Schizooura suggest an aerodynamic use as well as an ornamental one, with the pin-tailed shape being too narrow to impact aerodynamics.
Feather holes are chewing traces of lice (most probably Brueelia spp. lice) on the wing and tail feathers. They were described on , and because of easy countability, many evolutionary, ecological, and behavioral publications use them to quantify the intensity of infestation.
Parasitic cuckoos which grow up in the nests of other species also have host-specific feather lice and these seem to be transmitted only after the young cuckoos leave the host nest.
Birds maintain their feather condition by preening and bathing in water or dust bathing. It has been suggested that a peculiar behavior of birds, anting, in which ants are introduced into the plumage, helps to reduce parasites, but no supporting evidence has been found.
Feathers are also valuable in aiding the identification of species in forensic studies, particularly in to aircraft. The ratios of hydrogen isotopes in feathers help in determining the geographic origins of birds. Feathers may also be useful in the non-destructive sampling of pollutants.
The poultry industry produces a large amount of feathers as waste, which, like other forms of keratin, are slow to decompose. Feather waste has been used in a number of industrial applications as a medium for culturing microbes, biodegradable polymers, and production of enzymes. Feather proteins have been tried as an adhesive for wood board.
Some groups of Native people in Alaska have used ptarmigan feathers as temper (non-plastic additives) in pottery manufacture since the first millennium BC in order to promote thermal shock resistance and strength.Neusius, Sarah W. and G. Timothy Gross
2007 Seeking Our Past: An Introduction to North American Archaeology. Oxford University Press, NY.
In South America, brews made from the feathers of are used in traditional medications. In India, feathers of the Indian peacock have been used in traditional medicine for snakebite, infertility, and coughs.
Members of Scotland's Clan Campbell are known to wear feathers on their bonnets to signify authority within the clan. Clan chiefs wear three, chieftains wear two and an armiger wears one. Any member of the clan who does not meet the criteria is not authorized to wear feathers as part of traditional garb and doing so is considered presumptuous.
During the 18th, 19th, and early 20th centuries, there was a booming international trade in plumes for extravagant women's hats and other headgear (including in Victorian fashion). Frank Chapman noted in 1886 that feathers of as many as 40 species of birds were used in about three-fourths of the 700 ladies' hats that he observed in New York City.Doughty, Robin W. Feather Fashions and Bird Preservation, A Study in Nature Protection. University of California Press. Page 197. For instance, South American hummingbird feathers were used in the past to dress some of the miniature birds featured in singing bird boxes. This trade caused severe losses to bird populations (for example, and ).
Conservationists led campaigns against the use of feathers in hats, contributing to important measures for environmental protection and to changes in fashion. Examples are the creation of the Royal Society for the Protection of Birds in the UK in 1889, or the passage of the Lacey Act in USA in 1900, The ornamental feather market then largely collapsed. Feather trade , Smithsonian Institution
More recently, rooster plumage has become a popular trend as a hairstyle accessory, with feathers formerly used as fishing lures now being used to provide color and style to hair.
Feather products manufacturing in Europe has declined in the last 60 years, mainly due to competition from Asia.
Feathers have adorned hats at many prestigious events such as weddings and Ladies Day at racecourses (Royal Ascot).
Feathers and scales are made up of two distinct forms of keratin, and it was long thought that each type of keratin was exclusive to each skin structure (feathers and scales). However, feather keratin is also present in the early stages of development of American alligator scales. This type of keratin, previously thought to be specific to feathers, is suppressed during embryological development of the alligator and so is not present in the scales of mature alligators. The presence of this homologous keratin in both birds and indicates that it was inherited from a common ancestor.
This may suggest that crocodilian scales, bird and dinosaur feathers, and pterosaur are all developmental expressions of the same primitive archosaur skin structures; suggesting that feathers and pycnofibers could be homologous. Molecular dating methods in 2011 show that the subfamily of feather β-keratins found in extant birds started to diverge 143 million years ago, suggesting the pennaceous feathers of Anchiornis were not made of the feather β-keratins present in extant birds. However, a study of fossil feathers from the dinosaur Sinosauropteryx and other fossils revealed traces of beta-sheet proteins, using infrared spectroscopy and sulfur-X-ray spectroscopy. The presence of abundant alpha-proteins in some fossil feathers was shown to be an artefact of the fossilization process, as beta-protein structures are readily altered to alpha-helices during thermal degradation. In 2019, scientists found that genes for the production of feathers evolved at the base of archosauria, supporting that feathers were present at early ornithodirans and is consistent with the fossil record.
The majority of dinosaurs known to have had feathers or protofeathers are Theropoda, however featherlike "filamentous integumentary structures" are also known from the ornithischian dinosaurs Tianyulong and Psittacosaurus. The exact nature of these structures is still under study. However, it is believed that the stage-1 feathers (see Evolutionary stages section below) such as those seen in these two ornithischians likely functioned in display. In 2014, the ornithischian Kulindadromeus was reported as having structures resembling stage-3 feathers. The likelihood of scales evolving on early dinosaur ancestors are high. However, this was by assuming that primitive pterosaurs were scaly. A 2016 study analyzes the pulp morphology of the tail bristles of Psittacosaurus and finds they are similar to feathers but notes that they are also similar to the bristles on the head of the Congo peafowl, the beard of the turkey, and the spine on the head of the horned screamer. A reestimation of maximum likelihoods by paleontologist Thomas Holtz finds that filaments were more likely to be the ancestral state of dinosaurs.
In 2010, a carcharodontosaurid named Concavenator was found to have remiges on the ulna suggesting it might have had quill-like structures on the ams. However, Foth et al. 2014 disagress with the publication where they point out that the bumps on the ulna of Concavenator are on the anterolateral which is unlike remiges which are in a posterolateral on the ulna of some birds, they consider it more likely that these are attachments for interosseous ligaments. This was refuted by Cuesta Fidalgo and her colleagues, they pointed out that these bumps on the ulna are posterolateral which is unlike that of interosseous ligaments.
Since the 1990s, dozens of feathered dinosaurs have been discovered in the clade Maniraptora, which includes the clade Avialae and the recent common ancestors of birds, Oviraptorosauria and Deinonychosauria. In 1998, the discovery of a feathered oviraptorosaurian, Caudipteryx zoui, challenged the notion of feathers as a structure exclusive to Avialae.
Buried in the Yixian Formation in Liaoning, China, C. zoui lived during the Early Cretaceous Period. Present on the forelimbs and tails, their integumentary structure has been accepted as pennaceous vaned feathers based on the rachis and herringbone pattern of the barbs. In the clade Deinonychosauria, the continued divergence of feathers is also apparent in the families Troodontidae and Dromaeosauridae. Branched feathers with rachis, barbs, and barbules were discovered in many members including Sinornithosaurus millenii, a dromaeosaurid found in the Yixian formation (124.6 MYA).
Previously, a temporal paradox existed in the evolution of feathers—theropods with highly derived bird-like characteristics occurred at a later time than Archaeopteryx—suggesting that the descendants of birds arose before the ancestor. However, the discovery of Anchiornis huxleyi in the Late Jurassic Tiaojishan Formation (160 MYA) in western Liaoning in 2009
Two small wings trapped in amber dating to 100 mya show plumage existed in some bird predecessors. The wings most probably belonged to enantiornithes, a diverse group of avian dinosaurs.
A large Phylogenetics analysis of early dinosaurs by Matthew Baron, David B. Norman and Paul Barrett (2017) found that Theropoda is actually more closely related to Ornithischia, to which it formed the sister group within the clade Ornithoscelida. The study also suggested that if the feather-like structures of theropods and ornithischians are of common evolutionary origin then it would be possible that feathers were restricted to Ornithoscelida. If so, then the origin of feathers would have likely occurred as early as the Middle Triassic, though this has been disagreed upon. The lack of feathers present in large sauropods and ankylosaurs could be that feathers were suppressed by genomic regulators.
Feather evolution was broken down into the following stages by Xu and Guo in 2009:
However, Foth (2011) showed that some of these purported stages (stages 2 and 5 in particular) are likely simply artifacts of preservation caused by the way fossil feathers are crushed and the feather remains or imprints are preserved. Foth re-interpreted stage 2 feathers as crushed or misidentified feathers of at least stage 3, and stage 5 feathers as crushed stage 6 feathers.
The following simplified diagram of dinosaur relationships follows these results, and shows the likely distribution of plumaceous (downy) and pennaceous (vaned) feathers among dinosaurs and prehistoric birds. The diagram follows one presented by Xu and Guo (2009) modified with the findings of Foth (2011). The numbers accompanying each name refer to the presence of specific feather stages. Note that 's' indicates the known presence of scales on the body.
Cascocauda was almost entirely covered in an extensive coat of pycnofibres, which appear to have come in two types. The first are simple, curved filaments that range in length from 3.5–12.8 mm long. These filaments cover most of the animal, including the head, neck, body, limbs and tail. The second type consists of tufts of filaments joined near the base, similar to the branching down feathers of birds and other coelurosaurian dinosaurs, around 2.5–8.0 mm long and only cover the wing membranes. Studies of sampled pycnofibres revealed the presence of microbodies within the filaments, resembling the melanosome pigments identified in other fossil integuments, specifically phaeomelanosomes. Furthermore, infrared spectral analysis of these pycnofibres show similar absorption spectra to red human hair. These pycnofibres likely provided both insulation and may have helped streamline the body and wings during flight.
The identity of these branching structures as pycnofibres or feathers was challenged by Unwin & Martill (2020), who interpreted them as bunched-up and degraded aktinofibrils–stiffening fibres found in the wing membrane of pterosaurs–and attributed the melanosomes and keratin to skin rather than filaments. These claims were refuted by Yang and colleagues, who argue that Unwin and Martill's interpretations are inconsistent with the specimen's preservation. Namely, they argue that the consistent structure, regular spacing, and extension of the filaments beyond the wing membrane support their identification as pycnofibres. Further, they argue that the restriction of melanosomes and keratin to the fibres, as occurs in fossil dinosaur feathers, supports the case they are filaments and is not consistent with contamination from preserved skin. Protofeathers likely evolved in early archosaurs, not long after the P-T extinction event during the time metabolic rates of early archosaurs and synapsids were increasing, postures becoming erect, and sustained activity.
Feathers used in mating displays
Structure and use
Tail Length
Origin of ornamental feathers
Parasites
Human usage
Utilitarian
In religion and culture
Evolution
Functional considerations
Molecular evolution
Feathered dinosaurs
Evolutionary stages
In pterosaurs
See also
Further reading
External links
|
|