A concretion is a hard and compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word concretion is borrowed from Latin concretio , itself derived from concrescere , from con- and crescere .
Concretions form within layers of sedimentary Stratum that have already been deposited. They usually form early in the burial history of the sediment, before the rest of the sediment is hardened into rock. This concretionary cement often makes the concretion harder and more resistant to weathering than the host stratum.
There is an important distinction to draw between concretions and nodules. Concretions are formed from mineral precipitation around some kind of nucleus while a nodule is a replacement body.
Descriptions dating from the 18th century attest to the fact that concretions have long been regarded as geological curiosities. Because of the variety of unusual shapes, sizes and compositions, concretions have been interpreted to be dinosaur eggs, animal and plant (called ), extraterrestrial debris or human artifacts.
Depending on the environmental conditions present at the time of their formation, concretions can be created by either concentric or pervasive growth. In concentric growth, the concretion grows as successive layers of mineral precipitate around a central core. This process results in roughly spherical concretions that grow with time. In the case of pervasive growth, cementation of the host sediments, by infilling of its pore space by precipitated minerals, occurs simultaneously throughout the volume of the area, which in time becomes a concretion. Concretions are often exposed at the surface by subsequent erosion that removes the weaker, uncemented material.
Although concretions often consist of a single dominant mineral, other minerals can be present depending on the environmental conditions that created them. For example, carbonate concretions, which form in response to the reduction of sulfates by bacteria, often contain minor percentages of pyrite. Other concretions, which formed as a result of microbial sulfate reduction, consist of a mixture of calcite, barite, and pyrite.
Small hematite concretions or Martian spherules have been observed by the Opportunity rover in the Eagle Crater on Mars.
Septarian concretions are found in many kinds of mudstone, including lacustrine such as the Beaufort Group of northwest Mozambique, but are most commonly found in marine , such as the Staffin Shale Formation of Skye, the Kimmeridge Clay of England, or the Mancos Group of North America.
It is commonly thought that concretions grew incrementally from the inside outwards. Chemical and textural zoning in many concretions are consistent with this concentric model of formation. However, the evidence is ambiguous, and many or most concretions may have formed by pervasive cementation of the entire volume of the concretion at the same time. For example, if the porosity after early cementation varies across the concretion, then later cementation filling this porosity would produce compositional zoning even with uniform pore water composition. Whether the initial cementation was concentric or pervasive, there is considerable evidence that it occurred quickly and at shallow depth of burial. In many cases, there is clear evidence that the initial concretion formed around some kind of organic nucleus.
The origin of the carbonate-rich septaria is still debated. One possibility is that dehydration hardens the outer shell of the concretion while causing the interior matrix to shrink until it cracks. Shrinkage of a still-wet matrix may also take place through syneresis, in which the particles of colloidal material in the interior of the concretion become gradually more tightly bound while expelling water. Another possibility is that early cementation reduces the permeability of the concretion, trapping pore fluids and creating excess pore pressure during continued burial. This could crack the interior at depths as shallow as . A more speculative theory is that the septaria form by brittle fracturing resulting from . Regardless of the mechanism of crack formation, the septaria, like the concretion itself, likely form at a relatively shallow depth of burial of less than and possibly as little as . Geologically young concretions of the Errol Beds of Scotland show texture consistent with formation from flocculated sediments containing organic matter, whose decay left tiny gas bubbles (30 to 35 microns in diameter) and a soap of calcium fatty acids salts. The conversion of these fatty acids to calcium carbonate may have promoted shrinkage and fracture of the matrix.
One model for the formation of septarian concretions in the Staffin Shales suggests that the concretions started as semirigid masses of flocculated clay. The individual colloidal clay particles were bound by extracellular polymeric substances or EPS produced by colonizing bacteria. The decay of these substances, together with syneresis of the host mud, produced stresses that fractured the interiors of the concretions while still at shallow burial depth. This was possible only with the bacterial colonization and the right sedimentation rate. Additional fractures formed during subsequent episodes of shallow burial (during the Cretaceous) or uplift (during the Paleogene). Water derived from rain and snow (meteoric water) later infiltrated the beds and deposited ferroan calcite in the cracks.
Septarian concretions often record a complex history of formation that provides geologists with information on early diagenesis, the initial stages of the formation of sedimentary rock from unconsolidated sediments. Most concretions appear to have formed at depths of burial where sulfate-reducing microorganisms are active. This corresponds to burial depths of , and is characterized by generation of carbon dioxide, increased alkalinity and precipitation of calcium carbonate. However, there is some evidence that formation continues well into the methanogenic zone beneath the sulfate reduction zone.
A spectacular example of boulder septarian concretions, which are as much as in diameter, are the Moeraki Boulders. These concretions are found eroding out of Paleocene mudstone of the Moeraki Formation exposed along the coast near Moeraki, South Island, New Zealand. They are composed of calcite-cemented mud with septarian veins of calcite and rare late-stage quartz and ferrous dolomite.Fordyce, E., and P. Maxwell, 2003, Canterbury Basin Paleontology and Stratigraphy, Geological Society of New Zealand Annual Field Conference 2003 Field Trip 8, Miscellaneous Publication 116B, Geological Society of New Zealand, Dunedin, New Zealand. Forsyth, P.J., and G. Coates, 1992, The Moeraki boulders. Institute of Geological & Nuclear Sciences, Information Series no. 1, (Lower Hutt, New Zealand)Thyne, G.D., and J.R. Boles, 1989, Isotopic evidence for origin of the Moeraki septarian concretions, New Zealand, Journal of Sedimentary Petrology. v. 59, n. 2, p. 272–279. The much smaller septarian concretions found in the Kimmeridge Clay exposed in along the Wessex coast of England are more typical examples of septarian concretions.
A distinctive feature of hiatus concretions separating them from other types is that they were often encrusted by marine organisms including bryozoans, echinoderms and tube worms in the Paleozoic and bryozoans, oysters and tube worms in the Mesozoic and Cenozoic. Hiatus concretions are also often significantly bioerosion by worms and bivalves.
Elongate concretions are well known in the Kimmeridge Clay formation of northwest Europe. In outcrops, where they have acquired the name "doggers", they are typically only a few meters across, but in the subsurface they can be seen to penetrate up to tens of meters of along-hole dimension. Unlike limestone beds, however, it is impossible to consistently correlate them between even closely spaced wells.
The concretions were created by the precipitation of iron, which was dissolved in groundwater. The iron was originally present as a thin film of iron oxide surrounding sand grains in the Navajo Sandstone. Groundwater containing methane or petroleum from underlying rock beds reacted with the iron oxide, converting it to soluble reduced iron. When the iron-bearing groundwater came into contact with more oxygen-rich groundwater, the reduced iron was converted back to insoluble iron oxide, which formed the concretions. It is possible that reduced iron first formed siderite concretions that were subsequently oxidized. Iron-oxidizing bacteria may have played a role.
Iron sulfide concretions, such as the Kansas Pop rocks, consisting of either pyrite and marcasite, are nonmagnetic. On the other hand, iron sulfide concretions, which either are composed of or contain either pyrrhotite or smythite, will be magnetic to varying degrees. Prolonged heating of either a pyrite or marcasite concretion will convert portions of either mineral into pyrrhotite causing the concretion to become slightly magnetic.
Cannonball concretions
Hiatus concretions
Elongate concretions
Moqui Marbles
Kansas pop rocks
Claystones, clay dogs, and fairy stones
Gogottes
are sandstone concretions found in [[Oligocene]] (~30 million years) aged sediments near [[Fontainebleau]], France. Gogottes have fetched high prices at auction due to their sculpture-like quality.
See also
External links
|
|