Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear stress, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatics transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial injury site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrauma can occur during both compression and decompression events.
Barotrauma generally manifests as sinus or middle ear effects, lung overpressure injuries and injuries resulting from external squeezes. Decompression sickness is indirectly caused by ambient pressure reduction, and tissue damage is caused directly and indirectly by gas bubbles. However, these bubbles form out of supersaturated solution from dissolved gases, and are not generally considered barotrauma. Decompression illness is a term that includes decompression sickness and arterial gas embolism caused by lung overexpansion barotrauma. It is also classified under the broader term of dysbarism, which covers all medical conditions resulting from changes in ambient pressure.
Barotrauma typically occurs when the organism is exposed to a significant change in ambient pressure, such as when a Scuba diving, a free-diving or an airplane passenger ascends or descends or during uncontrolled decompression of a pressure vessel such as a diving chamber or pressurized aircraft, but can also be caused by a shock wave. Ventilator-induced lung injury (VILI) is a condition caused by over-expansion of the lungs by mechanical ventilation used when the body is unable to breathe for itself and is associated with relatively large tidal volumes and relatively high peak pressures. Barotrauma due to overexpansion of an internal gas-filled space may also be termed volutrauma.
Barotraumas of descent, also known as compression barotrauma, and squeezes, are caused by preventing the free change of volume of the gas in a closed space in contact with the diver, resulting in a pressure difference between the tissues and the gas space, and the unbalanced force due to this pressure difference causes deformation of the tissues resulting in cell rupture. Barotraumas of ascent, also called decompression barotrauma, are also caused when the free change of volume of the gas in a closed space in contact with the diver is prevented. In this case the pressure difference causes a resultant tension in the surrounding tissues which exceeds their tensile strength.
Patients undergoing hyperbaric oxygen therapy must equalize their ears to avoid barotrauma. High risk of otic barotrauma is associated with unconscious patients. Explosive decompression of a hyperbaric environment can produce severe barotrauma, followed by severe decompression bubble formation and other related injury. The Byford Dolphin incident is an example. Rapid uncontrolled decompression from caissons, airlocks, pressurised aircraft, spacecraft, and pressure suits can have similar effects of decompression barotrauma.
Collapse of a pressure resistant structure such as a submarine, submersible, or atmospheric diving suit can cause rapid compression barotrauma. A rapid change of altitude can cause barotrauma when internal air spaces cannot be equalised. Excessively strenuous efforts to equalise the ears using the Valsalva manoeuvre can overpressurise the middle ear, and can cause middle ear and/or inner ear barotrauma. An Explosion and explosive decompression create a pressure wave that can induce barotrauma. The difference in pressure between internal organs and the outer surface of the body causes injuries to internal organs that contain gas, such as the human lung, gastrointestinal tract, and ear. Lung injuries can also occur during rapid decompression, although the risk of injury is lower than with explosive decompression.
Mechanical ventilation can lead to barotrauma of the lungs. This can be due to either:
Barotrauma is a recognised complication of mechanical ventilation that can occur in any patient receiving mechanical ventilation, but is most commonly associated with acute respiratory distress syndrome. It used to be the most common complication of mechanical ventilation but can usually be avoided by limiting tidal volume and plateau pressure to less than 30 to 50 cm water column (30 to 50 mb). As an indicator of transalveolar pressure, which predicts alveolar distention, plateau pressure or peak airway pressure (PAP) may be the most effective predictor of risk, but there is no generally accepted safe pressure at which there is no risk. Risk also appears to be increased by aspiration of stomach contents and pre-existing disease such as Necrosis pneumonia and chronic lung disease. Status asthmaticus is a particular problem as it requires relatively high pressures to overcome bronchial obstruction.
When lung tissues are damaged by alveolar over-distension, the injury may be termed volutrauma, but volume and transpulmonary pressure are closely related. Ventilator induced lung injury is often associated with high tidal volumes (Vt).
Other injuries with similar causes are decompression sickness and ebullism.
POIS may also be caused by mechanical ventilation.
Hyperbaric oxygen can cause downregulation of the inflammatory response and resolution of oedema by causing hyperoxic arterial vasoconstriction of the supply to capillary beds. High concentration normobaric oxygen is appropriate as first aid but is not considered definitive treatment even when the symptoms appear to resolve. Relapses are common after discontinuing oxygen without recompression.
Divers who breathe from an underwater apparatus are supplied with breathing gas at ambient pressure, which results in their lungs containing gas at higher than atmospheric pressure. Divers breathing compressed air (such as when scuba diving) may develop a pneumothorax as a result of barotrauma from ascending just while breath-holding with their lungs fully inflated. An additional problem in these cases is that those with other features of decompression sickness are typically treated in a diving chamber with hyperbaric therapy; this can lead to a small pneumothorax rapidly enlarging and causing features of tension.
Diagnosis of a pneumothorax by physical examination alone can be difficult (particularly in smaller pneumothoraces). A chest radiograph, computed tomography (CT) scan, or ultrasound is usually used to confirm its presence. Other conditions that can result in similar symptoms include a hemothorax (buildup of blood in the pleural space), pulmonary embolism, and heart attack. A large bulla may look similar on a chest X-ray.
Gas bubbles escaping from a ruptured lung can travel along the outside of and blood vessels until they reach the mediastinal cavity round the heart, major blood vessels, oesophagus and trachea. Gas trapped in the mediastinum expands as the diver continues to rise. The pressure of the trapped gas may cause intense pain inside the rib cage and in the shoulders, and the gas may compress the respiratory passageways, making breathing difficult, and collapse blood vessels. Symptoms range from pain under the sternum, shock, shallow breathing, unconsciousness, respiratory failure, and associated cyanosis. The gas will usually be absorbed by the body over time, and when the symptoms are mild, no treatment may be necessary. Otherwise it may be vented through a hypodermic needle inserted into the mediastinum. Recompression is not usually indicated.
In terms of barotrauma the diagnostic workup for the affected individual could include the following:
Inner ear barotrauma can be difficult to distinguish from Inner ear decompression sickness. Both conditions manifest as cochleovestibular symptoms. The similarity of symptoms makes differential diagnosis difficult, which can delay appropriate treatment or lead to inappropriate treatment.
Nitrogen narcosis, oxygen toxicity, hypercarbia, and hypoxia can cause disturbances in balance or vertigo, but these appear to be central nervous system effects, not directly related to effects on the vestibular organs. High-pressure nervous syndrome during heliox compression is also a central nervous system dysfunction. Inner ear injuries with lasting effects are usually due to round window ruptures, often associated with Valsalva maneuver or inadequate middle ear equalisation. Inner ear barotrauma is often concurrent with middle ear barotrauma as the external causes are generally the same. A variety of injuries may be present, which may include inner ear haemorrhage, intralabyrinthine membrane tear, perilymph fistula, and other pathologies.
Divers who develop cochlear and/or vestibular symptoms during descent to any depth, or during shallow diving in which decompression sickness is unlikely, should be treated with bed rest with head elevation, and should avoid any activity which could cause raised cerebrospinal fluid and intralabyrinthine pressure. If there is no improvement in symptoms after 48 hours, exploratory tympanotomy may be considered to investigate possible repair of a labyrinthine window fistula. Recompression therapy is contraindicated in these cases, but is the definitive treatment for inner ear decompression sickness, making an early and accurate differential diagnosis important for deciding on appropriate treatment. IEBt in divers may be difficult to distinguish from inner ear decompression sickness (IEDCS), and as a dive profile alone cannot always eliminate either of the possibilities, the detailed dive history may be necessary to diagnose the more likely injury. It is also possible for both to occur at the same time, and IEDCS is more likely to affect the semicircular canals, causing severe vertigo, while IEBt is more likely to affect the cochlea, causing hearing loss, but these are just statistical probabilities, and in reality it can go either way or both. It is accepted practice to assume that if any symptom typical of DCS is present, that the diver has DCS and will be treated accordingly with recompression. Limited case data suggest that recompression does not usually cause harm if the differential diagnosis between IEBt vs IEDCS is doubtful.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
Some measures for protection against rapid decompression specific to airplanes include:
Outside of a pressurized cabin environment at very high altitudes, a pressure suit is the usual protective measure and is the definitive protection in decompression and exposure to vacuum, but they are expensive, heavy, bulky, restrict mobility, cause thermal regulatory problems, and reduce comfort. To prevent injury from unavoidable pressure changes, similar equalization techniques and relatively slow pressure changes are required, which in turn require patent Eustachian tubes and sinuses.
Sinus squeeze and middle ear squeeze are generally treated with decongestants to reduce the pressure differential, with anti-inflammatory medications to treat the pain. For severe pain, narcotic analgesics may be appropriate.
Suit, helmet and mask squeeze are treated as trauma according to symptoms and severity.
It has been claimed that bats can suffer fatal barotrauma in the low pressure zones behind the blades of wind turbines due to their more fragile mammalian lung structure in comparison with the more robust avian lungs, which are less affected by pressure change. The claims that have been made that can be killed by lung barotrauma when flying in low-pressure regions close to operating wind-turbine blades, have been supported by reports of measurements of the pressures around the turbine blades. The diagnosis and contribution of barotrauma to bat deaths near wind turbine blades have been disputed
by other research comparing dead bats found near wind turbines with bats killed by impact with buildings in areas with no turbines.
Pneumomediastinum
Diagnosis
Ear barotrauma
External auditory canal
Middle ear
Inner ear
Barosinusitis
Mask squeeze
Helmet squeeze
Pulmonary barotrauma
Prevention
Diving
Medical screening
Training
Mechanical ventilation
Aviation and spaceflight
Treatment
First aid
Emergency treatment
Medication
Outcomes
Epidemiology
Barotrauma in other animals
Swim bladder overexpansion
See also
External links
|
|