Product Code Database
Example Keywords: gran turismo -cave $98-131
barcode-scavenger
   » » Wiki: Arsenite
Tag Wiki 'Arsenite'.
Tag

In chemistry, an arsenite is a chemical compound containing an where arsenic has oxidation state +3. Note that in fields that commonly deal with groundwater chemistry, arsenite is used generically to identify soluble AsIII anions. IUPAC have recommended that arsenite compounds are to be named as arsenate(III), for example ortho-arsenite is called trioxidoarsenate(III). Ortho-arsenite contrasts to the corresponding anions of the lighter members of group 15, which has the structure and , which is bent.

A number of different arsenite anions are known:

  • ortho-arsenite, an ion of , with a pyramidal shape
  • meta-arsenite, a polymeric chain anion.
    (1998). 075140389X, Blackie Academic and Professional. 075140389X
  • pyro-arsenite,
  • catena-triarsenite,
  • catena-tetraarsenite,
  • cyclo-tetraarsenite
  • , a polymeric anion

In all of these the geometry around the AsIII centers are approximately trigonal, the lone pair on the arsenic atom is stereochemically active. Well known examples of arsenites include which contains a polymeric linear anion, , and silver ortho-arsenite, , which contains the trigonal anion.


Preparation of arsenites
Some arsenite salts can be prepared from an aqueous solution of . Examples of these are the meta-arsenite salts and at low temperature, hydrogen arsenite salts can be prepared, such as , , and .


Arsenite minerals
A number of minerals contain arsenite anions: , ; , ; , ; , (contains a complex polymeric anion); schneiderhöhnite, FeFe;Hawthorne, Frank C. "Schneiderhoehnite, , a densely packed arsenite structure." The Canadian Mineralogist 23.4 (1985): 675–679. , ; , ; , ; , .


Arsenites in the environment
Arsenic can enter groundwater due to naturally occurring arsenic at deeper levels or from mine workings. Arsenic(III) can be removed from water by a number of methods, oxidation of AsIII to AsV for example with chlorine followed by coagulation with for example iron(III) sulfate. Other methods include ion-exchange and filtration. Filtration is only effective if arsenic is present as particulates, if the arsenite is in solution it passes through the filtration membrane.EPA, United states Environmental Protection Agency, Report 815R00012, "Technologies and Costs for the Removal of Arsenic From Drinking Water", December 2000 [1]


Uses
Sodium arsenite is used in the water gas shift reaction to remove carbon dioxide. Fowler's solution first introduced in the 18th century was made up from Managing Arsenic in the Environment: From Soil to Human Health, R. Naidu, Csiro Publishing, 2006, as a solution of potassium meta-arsenite, .

Arsenic in its trioxide, As2O3, (brand name Trisenox, ATO) is used as a chemotherapy drug against acute promyelocytic leukaemia (APL), a type of myeloid leukemia. The detailed mechanism of action is unknown, but it is suspected to speed up apoptosis of cancer cells. Arsenic trioxide triggers morphological changes and DNA fragmentations in NB4 in vitro model for APL. It also degrades retinoic acid receptor alpha (RARA). RARA gene is important regulator of premyelocytic immune cell development, differentiation, and apoptosis.


Bacteria using and generating arsenite
Some species of obtain their energy by various fuels while to form arsenites. The involved are known as arsenate reductases.

In 2008, bacteria were discovered that employ a version of with arsenites as , producing arsenates (just like ordinary photosynthesis uses water as electron donor, producing molecular oxygen). The researchers conjectured that historically these photosynthesizing organisms produced the arsenates that allowed the arsenate-reducing bacteria to thrive. "Arsenic-loving bacteria rewrite photosynthesis rules", Chemistry World, 15 August 2008

In humans, arsenite inhibits pyruvate dehydrogenase (PDH complex) in the - reaction, by binding to the group of , a participant coenzyme. It also inhibits the oxoglutarate dehydrogenase complex by the same mechanism. The inhibition of these enzymes disrupts energy production.


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs