Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. Analytics also entails applying data patterns toward effective decision-making. It can be valuable in areas rich with recorded information; analytics relies on the simultaneous application of statistics, computer programming, and operations research to quantify performance.
Organizations may apply analytics to business data to describe, predict, and improve business performance. Specifically, areas within analytics include descriptive analytics, diagnostic analytics, predictive analytics, prescriptive analytics, and cognitive analytics. Analytics may apply to a variety of fields such as marketing, management, finance, online systems, information security, and software services. Since analytics can require extensive computation (see big data), the algorithms and software used for analytics harness the most current methods in computer science, statistics, and mathematics. According to International Data Corporation, global spending on big data and business analytics (BDA) solutions is estimated to reach $215.7 billion in 2021. As per Gartner, the overall analytic platforms software market grew by $25.5 billion in 2020.
Data analytics is a multidisciplinary field. There is extensive use of computer skills, mathematics, statistics, the use of descriptive techniques and predictive models to gain valuable knowledge from data through analytics. There is increasing use of the term advanced analytics, typically used to describe the technical aspects of analytics, especially in the emerging fields such as the use of machine learning techniques like neural networks, decision trees, logistic regression, linear to multiple regression analysis, and classification to do predictive modeling. It also includes unsupervised machine learning techniques like cluster analysis, principal component analysis, segmentation profile analysis and association analysis.
Marketing analytics consists of both qualitative and quantitative, structured and unstructured data used to drive strategic decisions about brand and revenue outcomes. The process involves predictive modelling, marketing experimentation, automation and real-time sales communications. The data enables companies to make predictions and alter strategic execution to maximize performance results.
Web analytics allows marketers to collect session-level information about interactions on a website using an operation called sessionization. Google Analytics is an example of a popular free analytics tool that marketers use for this purpose. Those interactions provide web analytics information systems with the information necessary to track the referrer, search keywords, identify the IP address, and track the activities of the visitor. With this information, a marketer can improve marketing campaigns, website creative content, and information architecture.
Analysis techniques frequently used in marketing include marketing mix modeling, pricing and promotion analyses, sales force optimization and customer analytics, e.g., segmentation. Web analytics and optimization of websites and online campaigns now frequently work hand in hand with the more traditional marketing analysis techniques. A focus on digital media has slightly changed the vocabulary so that marketing mix modeling is commonly referred to as attribution modeling in the digital or marketing mix modeling context.
These tools and techniques support both strategic marketing decisions (such as how much overall to spend on marketing, how to allocate budgets across a portfolio of brands and the marketing mix) and more tactical campaign support, in terms of targeting the best potential customer with the optimal message in the most cost-effective medium at the ideal time.
HR analytics has become a strategic tool in analyzing and forecasting human-related trends in the changing labor markets, using career analytics tools.
It has been suggested that people analytics is a separate discipline to HR analytics, with a greater focus on addressing business issues, while HR Analytics is more concerned with metrics related to HR processes. Additionally, people analytics may now extend beyond the human resources function in organizations. However, experts find that many HR departments are burdened by operational tasks and need to prioritize people analytics and automation to become a more strategic and capable business function in the evolving world of work, rather than producing basic reports that offer limited long-term value. Some experts argue that a change in the way HR departments operate is essential. Although HR functions were traditionally centered on administrative tasks, they are now evolving with a new generation of data-driven HR professionals who serve as strategic business partners.
Examples of HR analytic metrics include employee lifetime value (ELTV), labour cost expense percent, union percentage, etc.
The least risk loan may be to the very wealthy, but there are a very limited number of wealthy people. On the other hand, there are many poor that can be lent to, but at greater risk. Some balance must be struck that maximizes return and minimizes risk. The analytics solution may combine time series analysis with many other issues in order to make decisions on when to lend money to these different borrower segments, or decisions on the interest rate charged to members of a portfolio segment to cover any losses among members in that segment.
The analysis of unstructured data types is another challenge getting attention in the industry. Unstructured data differs from structured data in that its format varies widely and cannot be stored in traditional relational databases without significant effort at data transformation.
These challenges are the current inspiration for much of the innovation in modern analytics information systems, giving birth to relatively new machine analysis concepts such as complex event processing, full text search and analysis, and even new ideas in presentation. One such innovation is the introduction of grid-like architecture in machine analysis, allowing increases in the speed of massively parallel processing by distributing the workload to many computers all with equal access to the complete data set.
Analytics is increasingly used in education, particularly at the district and government office levels. However, the complexity of student performance measures presents challenges when educators try to understand and use analytics to discern patterns in student performance, predict graduation likelihood, improve chances of student success, etc.
|
|