The thyroid, or thyroid gland, is an endocrine gland in vertebrates. In humans, it is a butterfly-shaped gland located in the neck below the Adam's apple. It consists of two connected lobes. The lower two thirds of the lobes are connected by a thin band of tissue called the isthmus (: isthmi). Microscopically, the functional unit of the thyroid gland is the spherical thyroid follicle, lined with follicular cells (thyrocytes), and occasional parafollicular cells that surround a follicular lumen containing colloid.
The thyroid gland secretes three hormones: the two thyroid hormonestriiodothyronine and thyroid hormone a peptide hormone, calcitonin. The thyroid hormones influence the metabolic rate and protein synthesis and growth and development in children. Calcitonin plays a role in calcium homeostasis.
Secretion of the two thyroid hormones is regulated by thyroid-stimulating hormone (TSH), which is secreted from the anterior pituitary gland. TSH is regulated by thyrotropin-releasing hormone (TRH), which is produced by the hypothalamus.
Thyroid disorders include hyperthyroidism, hypothyroidism, thyroid inflammation (thyroiditis), thyroid enlargement (goitre), , and thyroid cancer. Hyperthyroidism is characterized by excessive secretion of thyroid hormones: the most common cause is the autoimmune disorder Graves' disease. Hypothyroidism is characterized by a deficient secretion of thyroid hormones: the most common cause is iodine deficiency. In iodine-deficient regions, hypothyroidism (due to iodine deficiency) is the leading cause of preventable intellectual disability in children. In iodine-sufficient regions, the most common cause of hypothyroidism is the autoimmune disorder Hashimoto's thyroiditis.
The thyroid is near the front of the neck, lying against and around the front of the larynx and trachea. The thyroid cartilage and cricoid cartilage lie just above the gland, below the Adam's apple. The isthmus extends from the second to third rings of the trachea, with the uppermost part of the lobes extending to the thyroid cartilage and the lowermost around the fourth to sixth tracheal rings. The infrahyoid muscles lie in front of the gland and the sternocleidomastoid muscle to the side. Behind the outer wings of the thyroid lie the two carotid artery. The trachea, larynx, lower pharynx and esophagus all lie behind the thyroid. In this region, the recurrent laryngeal nerve
The thyroid gland is covered by a thin fibrous capsule, which has an inner and an outer layer. The inner layer extrudes into the gland and forms the septum that divide the thyroid tissue into microscopic lobules. The outer layer is continuous with the pretracheal fascia, attaching the gland to the cricoid and thyroid cartilages via a thickening of the fascia to form the posterior suspensory ligament of thyroid gland, also known as Berry's ligament. This causes the thyroid to move up and down with the movement of these cartilages when swallowing occurs.
drainage frequently passes the prelaryngeal lymph nodes (located just above the isthmus) and the pretracheal and paratracheal lymph nodes. The gland receives sympathetic nerve supply from the superior, middle and inferior cervical ganglion of the sympathetic trunk. The gland receives parasympathetic nerve supply from the superior laryngeal nerve and the recurrent laryngeal nerve.
Sometimes there is a third lobe present called the pyramidal lobe. When present, this lobe often stretches up to the hyoid bone from the thyroid isthmus and may be one to several divided lobes. The presence of this lobe ranges in reported studies from 18.3% to 44.6%. It was shown to more often arise from the left side and occasionally separated. The pyramidal lobe is also known as Pierre Lalouette pyramid. The pyramidal lobe is a remnant of the thyroglossal duct, which usually wastes away during the thyroid gland's descent. Small accessory thyroid glands may in fact occur anywhere along the thyroglossal duct, from the foramen cecum of the tongue to the position of the thyroid in the adult. A small horn at the back of the thyroid lobes, usually close to the recurrent laryngeal nerve and the inferior thyroid artery, is called Zuckerkandl's tubercle.
Other variants include a levator muscle of thyroid gland, connecting the isthmus to the body of the hyoid bone, and the presence of the small thyroid ima artery.
The fetal hypothalamus and pituitary start to secrete thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH). TSH is first measurable at 11 weeks. By 18–20 weeks, the production of thyroxine (T4) reaches a clinically significant and self-sufficient level.
The neuroendocrine parafollicular cells, also known as C cells, responsible for the production of calcitonin, are derived from foregut endoderm. This part of the thyroid then first forms as the ultimopharyngeal body, which begins in the ventral fourth pharyngeal pouch and joins the primordial thyroid gland during its descent to its final location.
Aberrations in prenatal development can result in various forms of thyroid dysgenesis which can cause congenital hypothyroidism, and if untreated this can lead to cretinism.
After secretion, only a very small proportion of the thyroid hormones travel freely in the blood. Most are bound to thyroxine-binding globulin (about 70%), transthyretin (10%), and serum albumin (15%). Only the 0.03% of T4 and 0.3% of T3 traveling freely have hormonal activity. In addition, up to 85% of the T3 in blood is produced following conversion from T4 by iodothyronine deiodinases in organs around the body.
Thyroid hormones act by crossing the cell membrane and binding to intracellular nuclear receptor thyroid hormone receptors TR-α1, TR-α2, TR-β1, and TR-β2, which bind with hormone response elements and transcription factors to modulate DNA transcription. In addition to these actions on DNA, the thyroid hormones also act within the cell membrane or within cytoplasm via reactions with , including calcium ATPase, adenylyl cyclase, and glucose transporters.
The thyroid hormones are created from thyroglobulin. This is a protein within the colloid in the follicular lumen that is originally created within the rough endoplasmic reticulum of follicular cells and then transported into the follicular lumen. Thyroglobulin contains 123 units of tyrosine, which reacts with iodine within the follicular lumen.
Iodine is essential for the production of the thyroid hormones. Iodine (I0) travels in the blood as iodide (I−), which is taken up into the follicular cells by a sodium-iodide symporter. This is an ion channel on the cell membrane which in the same action transports two sodium ions and an iodide ion into the cell. Iodide then travels from within the cell into the lumen, through the action of pendrin, an iodide-chloride antiporter. In the follicular lumen, the iodide is then oxidation to iodine. This makes it more reactive, and the iodine is attached to the active tyrosine units in thyroglobulin by the enzyme thyroid peroxidase. This forms the precursors of thyroid hormones monoiodotyrosine (MIT), and diiodotyrosine (DIT).
When the follicular cells are stimulated by thyroid-stimulating hormone, the follicular cells reabsorb thyroglobulin from the follicular lumen. The iodinated tyrosines are cleaved, forming the thyroid hormones T4, T3, DIT, MIT, and traces of reverse triiodothyronine. T3 and T4 are released into the blood. The hormones secreted from the gland are about 80–90% T4 and about 10–20% T3. How Your Thyroid Works: A Delicate Feedback Mechanism. Updated 2009-05-21. The thyroid gland in Endocrinology: An Integrated Approach by Stephen Nussey and Saffron Whitehead (2001) Published by BIOS Scientific Publishers Ltd. Deiodinase in peripheral tissues remove the iodine from MIT and DIT and convert T4 to T3 and RT3. This is a major source of both RT3 (95%) and T3 (87%) in peripheral tissues.
TRH is secreted at an increased rate in situations such as cold exposure in order to stimulate thermogenesis. In addition to being suppressed by the presence of thyroid hormones, TSH production is blunted by dopamine, somatostatin, and .
Hyperthyroidism often causes a variety of non-specific symptoms including weight loss, increased appetite, insomnia, decreased tolerance of heat, tremor, palpitations, anxiety and nervousness. In some cases it can cause angina, Diarrhea, hair loss and muscle weakness. Such symptoms may be managed temporarily with drugs such as .
Long-term management of hyperthyroidism may include drugs that suppress thyroid function such as propylthiouracil, carbimazole and methimazole. Alternatively, radioactive iodine-131 can be used to destroy thyroid tissue: radioactive iodine is selectively taken up by thyroid cells, which over time destroys them. The chosen first-line treatment will depend on the individual and on the country where being treated. Thyroidectomy can sometimes be performed as a transoral thyroidectomy, a minimally invasive procedure. Surgery does however carry a risk of damage to the parathyroid glands and the recurrent laryngeal nerve, which innervates the vocal cords. If the entire thyroid gland is removed, hypothyroidism will inevitably result, and thyroid hormone substitutes will be needed. Thyroid Problems eMedicine Health. Retrieved on 2010-02-07
Hypothyroidism is managed with replacement of the thyroid hormones. This is usually given daily as an oral supplement, and may take a few weeks to become effective. Some causes of hypothyroidism, such as Postpartum thyroiditis and Subacute thyroiditis may be transient and pass over time, and other causes such as iodine deficiency may be able to be rectified with dietary supplementation.
When a nodule is present, thyroid function tests determine whether the nodule is secreting excess thyroid hormones, causing hyperthyroidism. When the thyroid function tests are normal, an ultrasound is often used to investigate the nodule, and provide information such as whether the nodule is fluid-filled or a solid mass, and whether the appearance is suggestive of a benign or malignant cancer. A needle aspiration biopsy may then be performed, and the sample undergoes cytology, in which the appearance of cells is viewed to determine whether they resemble normal or cancerous cells.
The presence of multiple nodules is called a multinodular goitre; and if it is associated with hyperthyroidism, it is called a toxic multinodular goitre.
Some forms of goitre are associated with pain, whereas many do not cause any symptoms. Enlarged goitres may extend beyond the normal position of the thyroid gland to below the sternum, around the airway or esophagus. Goitres may be associated with hyperthyroidism or hypothyroidism, relating to the underlying cause of the goitre. Thyroid function tests may be done to investigate the cause and effects of the goitre. The underlying cause of the goitre may be treated, however many goitres with no associated symptoms are Watchful waiting.
Hashimoto's thyroiditis is an autoimmune disorder in which the thyroid gland is infiltrated by the B cell and . These progressively destroy the thyroid gland. In this way, Hasimoto's thyroiditis may have occurred insidiously, and only be noticed when thyroid hormone production decreases, causing symptoms of hypothyroidism. Hashimoto's is more common in females than males, much more common after the age of 60, and has known genetic risk factors. Also more common in individuals with Hashimoto's thyroiditis are Type 1 diabetes, pernicious anaemia, Addison's disease vitiligo.
Postpartum thyroiditis occurs sometimes following childbirth. After delivery, the thyroid becomes inflamed and the condition initially presents with a period of hyperthyroidism followed by hypothyroidism and, usually, a return to normal function. The course of the illness takes place over several months, and is characterised by a painless goitre. Antibodies against thyroid peroxidase can be found on testing. The inflammation usually resolves without treatment, although thyroid hormone replacement may be needed during the period of hypothyroidism.
In most cases, thyroid cancer presents as a painless mass in the neck. It is very unusual for thyroid cancers to present with other symptoms, although in some cases cancer may cause hyperthyroidism. Most thyroid cancers are papillary, followed by follicular, medullary, and thyroid lymphoma. Because of the prominence of the thyroid gland, cancer is often detected earlier in the course of disease as the cause of a nodule, which may undergo fine-needle aspiration. Thyroid function tests will help reveal whether the nodule produces excess thyroid hormones. A radioactive iodine uptake test can help reveal the activity and location of the cancer and metastases.
Thyroid cancers are treated by thyroidectomy. Radioactive Iodine-131 may be given to radioablate the thyroid. Thyroxine is given to replace the hormones lost and to suppress TSH production, as TSH may stimulate recurrence. With the exception of the rare anaplastic thyroid cancer, which carries a very poor prognosis, most thyroid cancers carry an excellent prognosis and can even be considered curable.
Infants with thyroid hormone deficiency (congenital hypothyroidism) can manifest problems of physical growth and development as well as brain development, termed cretinism. Children with congenital hypothyroidism are treated supplementally with levothyroxine, which facilitates normal growth and development.
Mucinous, clear secretions may collect within these cysts to form either spherical masses or fusiform swellings, rarely larger than 2 to 3 cm in diameter. These are present in the midline of the neck anterior to the trachea. Segments of the duct and cysts that occur high in the neck are lined by stratified squamous epithelium, which is essentially identical to that covering the posterior portion of the tongue in the region of the foramen cecum. The disorders that occur in the lower neck more proximal to the thyroid gland are lined by epithelium resembling the thyroidal acinar epithelium. Characteristically, next to the lining epithelium, there is an intense lymphocytic infiltrate. superinfection may convert these lesions into abscess cavities, and rarely, give rise to cancers.
Another disorder is that of thyroid dysgenesis which can result in various presentations of one or more misplaced accessory thyroid glands. These can be asymptomatic.
Because the thyroid concentrates iodine, it also concentrates the various radioactive of iodine produced by nuclear fission. In the event of large accidental releases of such material into the environment, the uptake of radioactive iodine isotopes by the thyroid can, in theory, be blocked by saturating the uptake mechanism with a large surplus of Radiation pill, taken in the form of potassium iodide tablets. One consequence of the Chernobyl disaster was an increase in in children in the years following the accident.
Excessive iodine intake is uncommon and usually has no effect on the thyroid function. Sometimes though it may cause hyperthyroidism, and sometimes hypothyroidism with a resulting goitre.
An examination of the thyroid will also include observation of the person as a whole, to look for systemic signs such as weight gain or loss, hair loss, and signs in other locations – such as protrusion of the eyes or swelling of the calves in Graves' disease.
TSH levels are considered the most sensitive marker of thyroid dysfunction. They are however not always accurate, particularly if the cause of hypothyroidism is thought to be related to insufficient thyrotropin releasing hormone (TRH) secretion, in which case it may be low or falsely normal. In such a case a TRH stimulation test, in which TRH is given and TSH levels are measured at 30 and 60-minutes after, may be conducted.
T3 and T4 can be measured directly. However, as the two thyroid hormones travel bound to other molecules, and it is the "free" component that is biologically active, free T3 and free T4 levels can be measured. T3 is preferred, because in hypothyroidism T3 levels may be normal. The ratio of bound to unbound thyroid hormones is known as the thyroid hormone binding ratio (THBR). It is also possible to measure directly the main carriers of the thyroid hormones, thyroglobulin and throxine-binding globulin. Thyroglobulin will also be measurable in a healthy thyroid, and will increase with inflammation, and may also be used to measure the success of thyroid removal or ablation. If successful, thyroglobulin should be undetectable. Lastly, antibodies against components of the thyroid, particularly anti-TPO and anti-thyroglobulin, can be measured. These may be present in normal individuals but are highly Psychic for autoimmune-related disease.
When further imaging is required, a radiolabelled iodine-123 or technetium-99 uptake scan may take place. This can determine the size and shape of lesions, reveal whether nodules or goitres are metabolically active, and reveal and monitor sites of thyroid disease or cancer deposits metastases.
A fine needle aspiration of a sample of thyroid tissue may be taken in order to evaluate a lesion seen on ultrasound which is then sent for histopathology and cytology.
Computed tomography of the thyroid plays an important role in the evaluation of thyroid cancer. Creative Commons Attribution 4.0 International License CT scans often incidentally find thyroid abnormalities, and thereby practically becomes the first investigation modality.
French chemist Bernard Courtois discovered iodine in 1811, and in 1896 Eugen Baumann documented it as the central ingredient in the thyroid gland. He did this by boiling the thyroid glands of a thousand sheep, and named the precipitate, a combination of the thyroid hormones, 'iodothyrin'. David Marine in 1907 proved that iodine is necessary for thyroid function.
Graves' disease was described by Robert James Graves in 1834. The role of the thyroid gland in metabolism was demonstrated in 1895 by Adolf Magnus-Levy. Thyroxine was first isolated in 1914 and synthesized in 1927, and triiodothyroxine in 1952. The conversion of T4 to T3 was discovered in 1970. The process of discovering TSH took place over the early to mid twentieth century. TRH was discovered by Polish endocrinologist Andrew Schally in 1970, contributing in part to his Nobel Prize in Medicine in 1977.
In the nineteenth century numerous authors described both cretinism and myxedema, and their relationship to the thyroid. Charles Mayo coined the term hyperthyroidism in 1910. Hakaru Hashimoto documented a case of Hashimoto's thyroiditis in 1912, autoantibody in this disease were demonstrated in 1956. Knowledge of the thyroid and its conditions developed throughout the late nineteenth and twentieth centuries, with many modern treatments and investigative modalities evolving throughout the mid twentieth century, including the use of radioactive iodine, thiouracil and fine needle aspiration.
In , the thyroid is always found somewhere in the neck region. In most tetrapod species, there are two paired thyroid glands – that is, the right and left lobes are not joined. However, there is only ever a single thyroid gland in most , and the shape found in humans is common to many other species.
In larval , the thyroid originates as an exocrine gland, secreting its hormones into the gut, and associated with the larva's filter-feeding apparatus. In the adult lamprey, the gland separates from the gut, and becomes endocrine, but this path of development may reflect the evolutionary origin of the thyroid. For instance, the closest living relatives of vertebrates, the and amphioxi (lancelets), have a structure very similar to that of larval lampreys (the endostyle), and this also secretes iodine-containing compounds, though not thyroxine.
Thyroxine is critical to metabolic regulation, and growth throughout the vertebrate clade. Iodine and T4 trigger the metamorphosis from a plant-eating water-dwelling tadpole into a meat-eating land-dwelling frog, with better neurological, visuospatial, smell and cognitive abilities for hunting, as seen in other predatory animals. A similar phenomenon happens in the neotenic amphibian salamanders, which, without introducing iodine, do not transform into land-dwelling adults, and live and reproduce in the larval form of aquatic axolotl. Among , administering a thyroid-blocking agent such as propylthiouracil (PTU) can prevent tadpoles from metamorphosing into frogs; in contrast, administering thyroxine will trigger metamorphosis. In amphibian metamorphosis, thyroxine and iodine also exert a well-studied experimental model of apoptosis on the cells of gills, tail, and fins of tadpoles. Iodine, via iodolipids, has favored the evolution of terrestrial animal species and has likely played a crucial role in the evolution of the human brain.
Microanatomy
Thyroid follicles are small spherical groupings of cells 0.02–0.9mm in diameter that play the main role in thyroid function. They consist of a rim that has a rich blood supply, nerve and lymphatic presence, that surrounds a core of colloid that consists mostly of thyroid hormone precursor proteins called thyroglobulin, an iodine glycoprotein.
The core of a follicle is surrounded by a single layer of follicular cells. When stimulated by thyroid stimulating hormone (TSH), these secrete the thyroid hormones T3 and T4. They do this by transporting and metabolising the thyroglobulin contained in the colloid. Follicular cells vary in shape from flat to cuboid to columnar, depending on how active they are.
The follicular lumen is the fluid-filled space within a follicle of the thyroid gland. There are hundreds of follicles within the thyroid gland. A follicle is formed by a spherical arrangement of follicular cells. The follicular lumen is filled with colloid, a concentrated solution of thyroglobulin and is the site of synthesis of the thyroid hormones thyroxine (T4) and triiodothyronine (T3). The Thyroid Follicle , Endocrinology by J. Larry Jameson, MD, PhD and Leslie J. De Groot, MD, chapter 72
Scattered among follicular cells and in spaces between the spherical follicles are another type of thyroid cell, parafollicular cells. These cells secrete calcitonin and so are also called C cells.
Development
Function
Thyroid hormones
Hormone production
- Thyroglobulin is synthesized in the rough endoplasmic reticulum and follows the secretory pathway to enter the colloid in the lumen of the thyroid follicle by exocytosis.
- Meanwhile, a sodium-iodide (Na/I) symporter pumps iodide (I−) active transport into the cell, which previously has crossed the endothelium by largely unknown mechanisms.
- This iodide enters the follicular lumen from the cytoplasm by the transporter pendrin, in a purportedly passive manner.
- In the colloid, iodide (I−) is Redox to iodine (I0) by an enzyme called thyroid peroxidase.
- Iodine (I0) is very reactive and iodinates the thyroglobulin at Tyrosine residues in its protein chain (in total containing approximately 120 tyrosyl residues).
- In conjugation, adjacent tyrosyl residues are paired together.
- The entire complex re-enters the follicular cell by endocytosis.
- Proteolysis by various liberates thyroxine and triiodothyronine molecules, which enters the blood by largely unknown mechanisms.
]]
Regulation
Calcitonin
Gene and protein expression
Clinical significance
Functional disorders
Hyperthyroidism
Hypothyroidism
Diseases
Graves' disease
Nodules
Goitre
Inflammation
Cancer
Congenital
Iodine
Evaluation
Tests
Imaging
History
Antiquity
Scientific era
Surgery
Other animals
See also
Books
External links
|
|