Pollen is a powdery substance produced by most types of flowers of for the purpose of sexual reproduction. It consists of pollen grains (highly reduced microgametophytes), which produce male (sperm cells).
Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the to the pistil of flowering plants, or from the male Conifer cone to the female cone of . If pollen lands on a compatible pistil or female cone, it Germination, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and Forensic science.
Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination. In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower.
Pollen is infrequently used as food and food supplement. Because of agricultural practices, it is often contaminated by agricultural pesticides.
Pollen grains come in a wide variety of shapes, sizes, and surface markings characteristic of the species (see electron micrograph, right). Pollen grains of , , and are winged. The smallest pollen grain, that of the forget-me-not ( Myosotis spp.), is 2.5–5 micrometre (0.005 mm) in diameter. Corn pollen grains are large, about 90–100 μm. Most grass pollen is around 20–25 μm. Some pollen grains are based on geodesic polyhedra like a soccer ball. See also this picture by Igor Siwanowicz of a morning glory pollen grain.
In angiosperms, during flower development the anther is composed of a mass of cells that appear undifferentiated, except for a partially differentiated dermis. As the flower develops, fertile sporogenous cells, the archespore, form within the anther. The sporogenous cells are surrounded by layers of sterile cells that grow into the wall of the pollen sac. Some of the cells grow into nutritive cells that supply nutrition for the microspores that form by meiotic division from the sporogenous cells. The archespore cells divide by mitosis and differentiate to form pollen mother cells (microsporocyte, meiocyte).
In a process called microsporogenesis, four haploid are produced from each diploid pollen mother cell, after meiotic division. After the formation of the four microspores, which are contained by callose walls, the development of the pollen grain walls begins. The callose wall is broken down by an enzyme called callase and the freed pollen grains grow in size and develop their characteristic shape and form a resistant outer wall called the exine and an inner wall called the intine. The exine is what is preserved in the fossil record.
Two basic types of microsporogenesis are recognised, simultaneous and successive. In simultaneous microsporogenesis meiotic steps I and II are completed before cytokinesis, whereas in successive microsporogenesis cytokinesis follows. While there may be a continuum with intermediate forms, the type of microsporogenesis has systematic significance. The predominant form amongst the monocots is successive, but there are important exceptions.
During microgametogenesis, the unicellular microspores undergo mitosis and develop into mature containing the gametes. In some flowering plants, germination of the pollen grain may begin even before it leaves the microsporangium, with the generative cell forming the two sperm cells.
The spines may be less than a micron in length (spinulus, plural spinuli) referred to as spinulose (scabrate), or longer than a micron (echina, echinae) referred to as echinate. Various terms also describe the sculpturing such as reticulate, a net like appearance consisting of elements (murus, muri) separated from each other by a lumen (plural lumina). These reticulations may also be referred to as brochi.
The pollen wall protects the sperm while the pollen grain is moving from the anther to the stigma; it protects the vital genetic material from drying out and solar radiation. The pollen grain surface is covered with waxes and proteins, which are held in place by structures called sculpture elements on the surface of the grain. The outer pollen wall, which prevents the pollen grain from shrinking and crushing the genetic material during desiccation, is composed of two layers. These two layers are the tectum and the foot layer, which is just above the intine. The tectum and foot layer are separated by a region called the columella, which is composed of strengthening rods. The outer wall is constructed with a resistant biopolymer called sporopollenin.
Pollen apertures are regions of the pollen wall that may involve exine thinning or a significant reduction in exine thickness. They allow shrinking and swelling of the grain caused by changes in moisture content. The process of shrinking the grain is called harmomegathy. Elongated apertures or furrows in the pollen grain are called colpi (singular: colpus) or sulci (singular: sulcus). Apertures that are more circular are called pores. Colpi, sulci and pores are major features in the identification of classes of pollen. Pollen may be referred to as inaperturate (apertures absent) or aperturate (apertures present).
The aperture may have a lid (operculum), hence is described as operculate. However the term inaperturate covers a wide range of morphological types, such as functionally inaperturate (cryptoaperturate) and omniaperturate. Inaperaturate pollen grains often have thin walls, which facilitates pollen tube germination at any position. Terms such as uniaperturate and triaperturate refer to the number of apertures present (one and three respectively). Spiraperturate refers to one or more apertures being spirally shaped.
The orientation of furrows (relative to the original tetrad of microspores) classifies the pollen as sulcate or colpate. Sulcate pollen has a furrow across the middle of what was the outer face when the pollen grain was in its tetrad. If the pollen has only a single sulcus, it is described as monosulcate, has two sulci, as bisulcate, or more, as polysulcate.
Additionally, gymnosperm pollen grains often have air bladders, or vesicles, called sacci. The sacci are not actually balloons, but are sponge-like, and increase the buoyancy of the pollen grain and help keep it aloft in the wind, as most gymnosperms are Anemophily. Pollen can be monosaccate, (containing one saccus) or bisaccate (containing two sacci). Modern pine, Picea, and Podocarpus trees all produce saccate pollen.
Non-flowering seed plants (e.g., pine trees) are characteristically anemophilous. Anemophilous flowering plants generally have inconspicuous flowers. Entomophily (literally insect-loving) plants produce pollen that is relatively heavy, sticky and protein-rich, for dispersal by insect attracted to their flowers. Many insects and some are specialized to feed on pollen, and are called .
In non-flowering seed plants, pollen germinates in the pollen chamber, located beneath the Ovule, underneath the integuments of the ovule. A pollen tube is produced, which grows into the nucellus to provide nutrients for the developing sperm cells. Sperm cells of Pinophyta and Gnetophyta are without flagella, and are carried by the pollen tube, while those of and Ginkgophyta have many flagella.
When placed on the stigma of a flowering plant, under favorable circumstances, a pollen grain puts forth a pollen tube, which grows down the tissue of the style to the ovary, and makes its way along the placenta, guided by projections or hairs, to the micropyle of an ovule. The nucleus of the tube cell has meanwhile passed into the tube, as does also the generative nucleus, which divides (if it has not already) to form two sperm cells. The sperm cells are carried to their destination in the tip of the pollen tube. Double-strand breaks in DNA that arise during pollen tube growth appear to be efficiently DNA repair in the generative cell that carries the male genome to be passed on to the next plant generation. However, the vegetative cell that is responsible for tube elongation appears to lack this DNA repair capability.
Pollen allergies are common in polar and temperate climate zones, where production of pollen is seasonal. In the tropics pollen production varies less by the season, and allergic reactions less.
In northern Europe, common pollens for allergies are those of birch and alder, and in late summer wormwood and different forms of hay. Grass pollen is also associated with Asthma in some people, a phenomenon termed thunderstorm asthma.
In the US, people often mistakenly blame the conspicuous goldenrod flower for allergies. Since this plant is entomophilous (its pollen is dispersed by animals), its heavy, sticky pollen does not become independently airborne. Most late summer and fall pollen allergies are probably caused by ragweed, a widespread anemophilous plant.
Arizona was once regarded as a haven for people with pollen allergies, although several ragweed species grow in the desert. However, as suburbs grew and people began establishing irrigation, more irritating species of ragweed gained a foothold and Arizona lost its claim of freedom from hay fever.
Anemophilous spring blooming plants such as oak, birch, hickory, pecan, and early summer may also induce pollen allergies. Most cultivated plants with showy flowers are entomophilous and do not cause pollen allergies.
Symptoms of pollen allergy include Sneeze, itchy, or runny nose, nasal congestion, red, itchy, and watery eyes. Substances, including pollen, that cause allergies can trigger asthma. A study found a 54% increased chance of asthma attacks when exposed to pollen.
The number of people in the United States affected by hay fever is between 20 and 40 million, including around 6.1 million children and such allergy has proven to be the most frequent allergic response in the nation. Hay fever affects about 20% of Canadians and the prevalence is increasing. There are certain evidential suggestions pointing out hay fever and similar allergies to be of hereditary origin. Individuals who suffer from eczema or are tend to be more susceptible to developing long-term hay fever. Allergies and Hay Fever WebMD. Retrieved on 2010-03-09
Since 1990, pollen seasons have gotten longer and more pollen-filled, and climate change is responsible, according to a new study. The researchers attributed roughly half of the lengthening pollen seasons and 8% of the trend in pollen concentrations to climate changes driven by human activity.
In Denmark, decades of rising temperatures cause pollen to appear earlier and in greater amounts, exacerbated by the introduction of new species such as ragweed.Siewertsen, Bjarne. " Hård nyser for allergikere i varm fremtid " (English: Hard sneeze for allergic people in warm future) Danish Meteorological Institute, 18 April 2015. Retrieved: 19 April 2015.
The most efficient way to handle a pollen allergy is by preventing contact with the material. Individuals carrying the ailment may at first believe that they have a simple summer cold, but hay fever becomes more evident when the apparent cold does not disappear. The confirmation of hay fever can be obtained after examination by a general physician. Bee, grass pollen allergy symptoms . allergiesandtreatments.com. Retrieved on 2010-03-09
Decongestants can be administered in different ways such as tablets and .
Allergy immunotherapy (AIT) treatment involves administering doses of allergens to accustom the body to pollen, thereby inducing specific long-term tolerance. Allergy immunotherapy can be administered orally (as sublingual tablets or sublingual drops), or by injections under the skin (subcutaneous). Discovered by Leonard Noon and John Freeman in 1911, allergy immunotherapy represents the only causative treatment for respiratory allergies.
Some species of Heliconius butterflies consume pollen as adults, which appears to be a valuable nutrient source, and these species are more distasteful to predators than the non-pollen consuming species.
Although , butterfly, and are not pollen eaters per se, their consumption of nectar in flowers is an important aspect of the pollination process.
Honey produced by bees from natural sources contains pollen derived p-coumaric acid, an antioxidant and natural bactericide that is also present in a wide variety of plants and plant-derived food products.
The U.S. Food and Drug Administration (FDA) has not found any harmful effects of bee pollen consumption, except for the usual allergies. However, FDA does not allow bee pollen marketers in the United States to make health claims about their produce, as no scientific basis for these has ever been proven. Furthermore, there are possible dangers not only from allergic reactions but also from contaminants such as pesticides and from fungi and bacteria growth related to poor storage procedures. A manufacturers's claim that pollen collecting helps the bee colonies is also controversial. Document ENY118. Original publication date November 1, 1994. Revised February 1, 1995. Reviewed May 1, 2003.
Pine pollen () is traditionally consumed in Korea as an ingredient in sweets and beverages. Māori of precolonial New Zealand would gather pollen of Typha orientalis to make a special bread called pungapunga.
Structure and formation
Formation
Structure
Pollination
In the fossil record
Allergy to pollen
Treatment
Nutrition
In humans
Parasites
Forensic palynology
Spiritual purposes
Pollen grain staining
See also
Bibliography
External links
|
|