Penicillium () is a genus of Ascomycota fungus that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.
Some members of the genus produce penicillin, a molecule that is used as an antibiotic, which kills or stops the growth of certain kinds of bacteria. Other species are used in cheesemaking. According to the Dictionary of the Fungi (10th edition, 2008), the widespread genus contains over 300 species.
In his 1979 monograph, John I. Pitt divided Penicillium into four subgenera based on conidiophore morphology and branching pattern: Aspergilloides, Biverticillium, Furcatum, and Penicillium. Species included in subgenus Biverticillium were later merged into Talaromyces.
For a current outline of Penicillum and related genera, consult Houbracken et al. (2020). This outline is based on molecular phylogenetic data and reflects the "one fungus, one name" change.
Sexual reproduction involves the production of , commencing with the fusion of an archegonium and an antheridium, with sharing of nuclei. The irregularly distributed ascus contain eight unicellular ascospores each.
Some Penicillium species affect the fruits and bulbs of plants, including P. expansum, apples and pears; P. digitatum, citrus fruits; and P. allii, garlic. Some species are known to be pathogenic to animals; P. corylophilum, P. fellutanum, P. implicatum, P. janthinellum, P. viridicatum, and P. waksmanii are potential pathogens of mosquitoes.
Penicillium species are present in the air and dust of indoor environments, such as homes and public buildings. The fungus can be readily transported from the outdoors, and grow indoors using building material or accumulated soil to obtain nutrients for growth. Penicillium growth can still occur indoors even if the relative humidity is low, as long as there is sufficient moisture available on a given surface. A British study determined that Aspergillus- and Penicillium-type spores were the most prevalent in the indoor air of residential properties, and exceeded outdoor levels. Even ceiling tiles can support the growth of Penicillium—as one study demonstrated—if the relative humidity is 85% and the moisture content of the tiles is greater than 2.2%.
Some Penicillium species cause damage to machinery and the combustible materials and lubricants used to run and maintain them. For example, P. chrysogenum (formerly P. notatum), P. steckii, P. cyclopium, and P. nalgiovensis affect fuels; P. chrysogenum, P. rubrum, and P. verrucosum cause damage to oils and lubricants; P. regulosum damages optical and protective glass.
In addition to their importance in the food industry, species of Penicillium and Aspergillus serve in the production of a number of biotechnologically produced and other macromolecules, such as gluconic acid, citric acid, and , as well as several , lipase, , , and . Some Penicillium species have shown potential for use in bioremediation, more specifically mycoremediation, because of their ability to break down a variety of xenobiotic compounds.
The genus includes a wide variety of species molds that are the source molds of major . Penicillin, a drug produced by P. chrysogenum (formerly P. notatum), was accidentally discovered by Alexander Fleming in 1929, and found to inhibit the growth of Gram-positive bacteria (see beta-lactams). Its potential as an antibiotic was realized in the late 1930s, and Howard Florey and Ernst Chain purified and concentrated the compound. The drug's success in saving soldiers in World War II who had been dying from infected wounds resulted in Fleming, Florey and Chain jointly winning the Nobel Prize in Medicine in 1945.
Griseofulvin is an antifungal drug and a potential chemotherapeutic agent that was discovered in P. griseofulvum. Additional species that produce compounds capable of inhibiting the growth of tumor cells in vitro include: P. pinophilum, P. canescens, and P. glabrum.
These findings with Penicillium species are consistent with accumulating evidence from studies of other Eukaryote species that sex was likely present in the common ancestor of all . Furthermore, these recent results suggest that sex can be maintained even when very little genetic variability is produced.
Prior to 2013, when the "one fungus, one name" nomenclature change came into effect, Penicillium was used as the genus for anamorph (clonal forms) of fungi and Talaromyces was used for the teleomorph (sexual forms) of fungi. After 2013 however, fungi were reclassified based on their genetic relatedness to each other and now the genera Penicillium and Talaromyces both contain some species capable of only clonal reproduction and others that can reproduce sexually. In fact, the two genera are currently classified to different families.
Further reading
External links
|
|