Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.
In vertebrates, melatonin's functions extend to synchronizing sleep-wake cycles, encompassing sleep-wake timing and blood pressure regulation, as well as controlling seasonal rhythmicity (circannual cycle), which includes reproduction, fattening, molting, and hibernation. Its effects are mediated through the activation of melatonin receptors and its role as an antioxidant. In plants and bacteria, melatonin primarily serves as a defense mechanism against oxidative stress, indicating its evolutionary significance. The mitochondria, key organelles within cells, are the main producers of antioxidant melatonin, underscoring the molecule's "ancient origins" and its fundamental role in protecting the earliest cells from reactive oxygen species.
In addition to its endogenous functions as a hormone and antioxidant, melatonin is also administered exogenously as a dietary supplement and medication. Melatonin is used medically primarily for sleep-related issues: for example, prolonged-release melatonin (Circadin) is approved in several countries for short-term treatment of insomnia in people over 55. It is used in the treatment of , including insomnia and various circadian rhythm sleep disorders.
Furthermore, melatonin functions as a high-capacity antioxidant, or free radical scavenger, within mitochondria, playing a dual role in combating cellular oxidative stress. First, it directly neutralizes free radicals, and second, it promotes the gene expression of essential antioxidant enzymes, such as superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. This increase in antioxidant enzyme expression is mediated through signal transduction pathways activated by the binding of melatonin to its receptors. Through these mechanisms, melatonin protects the cell against oxidative stress in two ways, highlighting how it serves human health beyond regulating the sleep-wake cycle.
The antioxidant properties of melatonin were first recognized in 1993. In vitro studies reveal that melatonin directly neutralizes various reactive oxygen species, including hydroxyl (OH•), superoxide (O2−•), and reactive nitrogen species such as nitric oxide (NO•). In plants, melatonin works synergistically with other antioxidants, enhancing the overall effectiveness of each antioxidant. This compound has been found to be twice as efficacious as vitamin E, a known potent lipophilic antioxidant, at scavenging peroxyl radicals. The promotion of antioxidant enzyme expression, such as superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase, is mediated through melatonin receptor-triggered signal transduction pathways.
Melatonin's concentration in the mitochondrial matrix is significantly higher than that found in the blood plasma, emphasizing its role not only in direct free radical scavenging but also in modulating the expression of antioxidant enzymes and maintaining mitochondrial integrity. This multifaceted role shows the physiological significance of melatonin as a mitochondrial antioxidant, a notion supported by numerous scholars.
Furthermore, the interaction of melatonin with reactive oxygen and nitrogen species results in the formation of metabolites capable of reducing free radicals. These metabolites, including cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), and N1-acetyl-5-methoxykynuramine (AMK), contribute to the broader antioxidative effects of melatonin through further redox reactions with free radicals.
Serotonin, an essential neurotransmitter, is further converted into N-acetylserotonin by the action of serotonin N-acetyltransferase, using acetyl-CoA. The final step in the pathway involves the methylation of N-acetylserotonin's hydroxyl group by hydroxyindole O-methyltransferase, with S-adenosyl methionine as the methyl donor, to produce melatonin.
In bacteria, protists, fungi, and plants, the synthesis of melatonin also involves tryptophan as an intermediate but originates indirectly from the shikimate pathway. The pathway commences with D-erythrose 4-phosphate and phosphoenolpyruvate, and in photosynthetic cells, additionally involves carbon dioxide. While the subsequent biosynthetic reactions share similarities with those in animals, there are slight variations in the enzymes involved in the final stages.
The hypothesis that melatonin synthesis occurs within mitochondria and chloroplasts suggests an evolutionary and functional significance of melatonin in cellular energy metabolism and defense mechanisms against oxidative stress, reflecting the molecule's ancient origins and its multifaceted roles across different domains of life.
The first mechanism involves a slow transfer of one electron from THB to molecular oxygen (O2), potentially producing a superoxide (). This superoxide could then recombine with the THB radical to form 4a-peroxypterin. 4a-peroxypterin may either react with the active site iron (II) to create an iron-peroxypterin intermediate or directly transfer an oxygen atom to the iron, facilitating the hydroxylation of L-tryptophan.
Alternatively, the second mechanism proposes that oxygen interacts with the active site iron (II) first, forming iron (III) superoxide. This molecule could then react with THB to form an iron-peroxypterin intermediate.
Following the formation of iron (IV) oxide from the iron-peroxypterin intermediate, this oxide selectively Nucleophile a double bond to yield a carbocation at the C5 position of the indole ring. A subsequent 1,2-shift of the hydrogen and the loss of one of the two hydrogen atoms on C5 would restore aromaticity, producing 5-hydroxy-L-tryptophan.
The decarboxylation of 5-hydroxy-L-tryptophan to produce 5-hydroxytryptamine is then facilitated by a decarboxylase enzyme with pyridoxal phosphate (PLP) as a cofactor. PLP forms an imine with the amino acid derivative, facilitating the breaking of the carbon–carbon bond and release of carbon dioxide. The protonation of the amine derived from tryptophan restores the aromaticity of the pyridine ring, leading to the production of 5-hydroxytryptamine and PLP.
Serotonin N-acetyltransferase, with histidine residue His122, is hypothesized to deprotonate the primary amine of 5-hydroxytryptamine. This deprotonation allows the lone pair on the amine to attack acetyl-CoA, forming a tetrahedral intermediate. The thiol from coenzyme A then acts as a leaving group when attacked by a general base, producing N-acetylserotonin.
The final step in the biosynthesis of melatonin involves the methylation of N-acetylserotonin at the hydroxyl position by SAM, resulting in the production of S-adenosyl homocysteine (SAH) and melatonin.
Blue light, especially within the range, inhibits the biosynthesis of melatonin, with the degree of suppression being directly proportional to the intensity and duration of light exposure. Historically, humans in temperate climates experienced limited exposure to blue daylight during winter months, primarily receiving light from sources that emitted predominantly yellow light, such as fires. The incandescent light bulbs used extensively throughout the 20th century emitted relatively low levels of blue light. It has been found that light containing only wavelengths greater than 530 nm does not suppress melatonin under bright-light conditions. The use of glasses that block blue light in the hours preceding bedtime can mitigate melatonin suppression. Additionally, wearing blue-blocking goggles during the last hours before bedtime is recommended for individuals needing to adjust to an earlier bedtime since melatonin facilitates the onset of sleep.
The 2023 European Insomnia Guideline recommended use of prolonged-release melatonin for treatment of insomnia in people age 55 or older for up to 3months. It recommended against Instant-release or over-the-counter melatonin for treatment of insomnia. These recommendations were based on several Meta-analysis published in 2022 and 2023.
The American Academy of Sleep Medicine's 2017 clinical practice guidelines recommended against the use of melatonin in the treatment of insomnia due to poor effectiveness and very low quality of evidence.
Melatonin is known to reduce jet lag, especially in eastward travel. However, if it is not taken at the correct time, it can instead delay adaptation.
Melatonin appears to have limited use against the sleep problems of people who work shift work. Tentative evidence suggests that it increases the length of time people are able to sleep.
Meta-analysis, published between 2005 and 2017, appear to show different results as to whether melatonin is effective for circadian rhythm sleep disorders or not. Some found that it was effective, while others found no evidence of effectiveness. Meta-analyses of melatonin for delayed sleep phase syndrome that found it effective have reported that it improves time to sleep onset by about 40minutes (0.67hours) and advances onset of endogenous melatonin secretion by about 1.2hours (72minutes). One meta-analysis found that melatonin was notably more effective in improving sleep onset latency in people with delayed sleep phase syndrome than in people with insomnia (improvement of 39minutes vs. 7minutes, respectively). One meta-analysis found that melatonin was probably effective for jet lag syndrome.
Low doses of melatonin may be advantageous to high doses in the treatment of sleep-cycle disorders.
Melatonin is also available as an over-the-counter dietary supplement in many countries. It is available in both immediate-release and less commonly prolonged-release forms. The compound is available in supplements at doses ranging from 0.3mg to 10mg or more. It is also possible to buy raw melatonin powder by weight. Immediate-release formulations of melatonin cause blood levels of melatonin to reach their peak in about an hour. The hormone may be administered orally, as capsules, gummies, tablets, oral films, or as a liquid. It is also available for use sublingually, or as transdermal patches. Several inhalation-based melatonin products with a wide range of doses are available but their safety remains to be evaluated.
The American Academy of Sleep Medicine (AASM) says that the melatonin content in unregulated (without a USP verified mark) supplements can diverge widely from the claimed amount; a study found that the melatonin content ranged from one half to four times the stated dose.
The hormone melatonin was isolated in 1958 by Aaron B. Lerner, a dermatology professor, and his team at Yale University. Motivated by the possibility that a substance from the pineal gland could be beneficial in treating skin diseases, they extracted and identified melatonin from bovine pineal gland extracts. Subsequent research in the mid-1970s by Lynch and others demonstrated that melatonin production follows a circadian rhythm in human pineal glands.
The first patent for the therapeutic use of melatonin as a low-dose sleep aid was awarded to Richard Wurtman at the Massachusetts Institute of Technology in 1995.
In humans, ~30 μg of melatonin is produced daily and 80% of the total amount is produced in the night (W). The plasma maximum concentration of melatonin at night are 80–120 pg/mL and the concentrations during the day are between 10–20 pg/mL.
Many animals and humans use the variation in duration of melatonin production each day as a seasonal clock. In animals including humans, the profile of melatonin synthesis and secretion is affected by the variable duration of night in summer as compared to winter. The change in duration of secretion thus serves as a biological signal for the organization of daylength-dependent (Photoperiodism) seasonal functions such as reproduction, behavior, coat growth, and camouflage coloring in seasonal animals. In seasonal breeders that do not have long gestation periods and that mate during longer daylight hours, the melatonin signal controls the seasonal variation in their sexual physiology, and similar physiological effects can be induced by exogenous melatonin in animals including mynah birds and hamsters. Melatonin can suppress libido by inhibiting secretion of luteinizing hormone and follicle-stimulating hormone from the anterior pituitary gland, especially in mammals that have a Reproduction season when daylight hours are long. The reproduction of Polyestrous is repressed by melatonin and the reproduction of Polyestrous is stimulated by melatonin. In sheep, melatonin administration has also shown antioxidant and immune-modulatory regime in prenatally stressed offspring helping them survive the crucial first days of their lives.
During the night, melatonin regulates leptin, lowering its levels.
have lost all the genes for melatonin synthesis as well as those for melatonin receptors. This is thought to be related to their unihemispheric sleep pattern (one brain hemisphere at a time). Similar trends have been found in .
Although a role for melatonin as a plant hormone has not been clearly established, its involvement in processes such as growth and photosynthesis is well established. Only limited evidence of endogenous circadian rhythms in melatonin levels has been demonstrated in some plant species and no membrane-bound receptors analogous to those known in animals have been described. Rather, melatonin performs important roles in plants as a growth regulator, as well as environmental stress protector. It is synthesized in plants when they are exposed to both biological stresses, for example, fungal infection, and nonbiological stresses such as extremes of temperature, toxins, increased soil salinity, drought, etc.
Herbicide-induced oxidative stress has been experimentally mitigated in vivo in a high-melatonin transgenic rice. Studies conducted on lettuce grown in saline soil conditions have shown that the application of melatonin significantly mitigates the harmful effects of salinity. Foliar application increases the number of leaves, their surface area, increases fresh weight and the content of chlorophyll a and chlorophyll b, and the content of carotenoids compared to plants not treated with melatonin.
Fungal disease resistance is another role. Added melatonin increases resistance in Malus prunifolia against Diplocarpon mali. Also acts as a growth inhibitor on fungal pathogens including Alternaria, Botrytis, and Fusarium spp. Decreases the speed of infection. As a seed treatment, protects Lupinus albus from fungi. Dramatically slows Pseudomonas syringae tomato DC3000 infecting Arabidopsis thaliana and infecting Nicotiana benthamiana.
Novo Nordisk have used genetically modified Escherichia coli to produce melatonin.
|
|