Gallium is a chemical element; it has Chemical symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. In its liquid state, it becomes silvery white. If enough force is applied, solid gallium may fracture conchoidally. Since its discovery in 1875, gallium has widely been used to make with low melting points. It is also used in , as a dopant in semiconductor substrates.
The melting point of gallium, , is used as a temperature reference point. Gallium alloys are used in thermometers as a non-toxic and environmentally friendly alternative to mercury, and can withstand higher temperatures than mercury. A melting point of , well below the freezing point of water, is claimed for the alloy galinstan (62–95% gallium, 5–22% indium, and 0–16% tin by weight), but that may be the freezing point with the effect of supercooling.
Gallium does not occur as a free element in nature, but rather as gallium(III) compounds in trace amounts in zinc ores (such as sphalerite) and in bauxite. Elemental gallium is a liquid at temperatures greater than , and will melt in a person's hands at normal human body temperature of .
Gallium is predominantly used in electronics. Gallium arsenide, the primary chemical compound of gallium in electronics, is used in microwave circuits, high-speed switching circuits, and infrared circuits. Semiconducting gallium nitride and indium gallium nitride produce blue and violet light-emitting diodes and . Gallium is also used in the production of artificial gadolinium gallium garnet for jewelry. It has no known natural role in biology. Gallium(III) behaves in a similar manner to ferric salts in biological systems and has been used in some medical applications, including pharmaceuticals and radiopharmaceuticals.
The melting point of gallium, at 302.9146 K (29.7646 °C, 85.5763 °F), is just above room temperature, and is approximately the same as the average summer daytime temperatures in Earth's mid-latitudes. This melting point (mp) is one of the formal temperature reference points in the International Temperature Scale of 1990 (ITS-90) established by the International Bureau of Weights and Measures (BIPM). The triple point of gallium, 302.9166 K (29.7666 °C, 85.5799 °F), is used by the US National Institute of Standards and Technology (NIST) in preference to the melting point.
The melting point of gallium allows it to melt in the human hand, and then solidify if removed. The liquid metal has a strong tendency to supercooling below its melting point/freezing point: Ga can be kept in the liquid state below 90 K. Seed crystal with a crystal helps to initiate freezing. Gallium is one of the four non-radioactive metals (with caesium, rubidium, and mercury) that are known to be liquid at, or near, normal room temperature. Of the four, gallium is the only one that is neither highly reactive (as are rubidium and caesium) nor highly toxic (as is mercury) and can, therefore, be used in metal-in-glass high-temperature thermometers. It is also notable for having one of the largest liquid ranges for a metal, and for having (unlike mercury) a low vapor pressure at high temperatures. Gallium's boiling point, 2676 K, is nearly nine times higher than its melting point on the Kelvin, the greatest ratio between melting point and boiling point of any element. Unlike mercury, liquid gallium metal wetting glass and skin, along with most other materials (with the exceptions of quartz, graphite, gallium(III) oxide and PTFE), making it mechanically more difficult to handle even though it is substantially less toxic and requires far fewer precautions than mercury. Gallium painted onto glass is a brilliant mirror. For this reason as well as the metal contamination and freezing-expansion problems, samples of gallium metal are usually supplied in polyethylene packets within other containers.
Gallium does not in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Within a unit cell, each atom has only one nearest neighbor (at a distance of 244 picometre). The remaining six unit cell neighbors are spaced 27, 30 and 39 pm farther away, and they are grouped in pairs with the same distance. Many stable and metastable phases are found as function of temperature and pressure.
The bonding between the two nearest neighbors is covalent; hence Ga2 dimers are seen as the fundamental building blocks of the crystal. This explains the low melting point relative to the neighbor elements, aluminium and indium. This structure is strikingly similar to that of iodine and may form because of interactions between the single 4p electrons of gallium atoms, further away from the nucleus than the 4s electrons and the Ar3d10 core. This phenomenon recurs with mercury with its "pseudo-noble-gas" Xe4f145d106s2 electron configuration, which is liquid at room temperature. The 3d10 electrons do not shield the outer electrons very well from the nucleus and hence the first ionisation energy of gallium is greater than that of aluminium. Ga2 dimers do not persist in the liquid state and liquid gallium exhibits a complex low-coordinated structure in which each gallium atom is surrounded by 10 others, rather than 11–12 neighbors typical of most liquid metals.
The physical properties of gallium are highly Anisotropy, i.e. have different values along the three major crystallographic axes a, b, and c (see table), producing a significant difference between the linear (α) and volume thermal expansion coefficients. The properties of gallium are strongly temperature-dependent, particularly near the melting point. For example, the coefficient of thermal expansion increases by several hundred percent upon melting.
Alkaline hydroxide solutions dissolve gallium, forming gallate salts (not to be confused with identically named gallic acid salts) containing the anion. Gallium hydroxide, which is amphoteric, also dissolves in alkali to form gallate salts. Although earlier work suggested as another possible gallate anion, it was not found in later work.
Gallium(III) sulfide, , has 3 possible crystal modifications. It can be made by the reaction of gallium with hydrogen sulfide () at 950 °C. Alternatively, can be used at 747 °C:
Reacting a mixture of alkali metal carbonates and with leads to the formation of thiogallates containing the anion. Strong acids decompose these salts, releasing in the process. The mercury salt, , can be used as a phosphor.
Gallium also forms sulfides in lower oxidation states, such as gallium(II) sulfide and the green gallium(I) sulfide, the latter of which is produced from the former by heating to 1000 °C under a stream of nitrogen.
The other binary chalcogenides, and , have the zincblende structure. They are all semiconductors but are easily hydrolysis and have limited utility.
Gallium forms ternary ; for example:
Similar compounds with phosphorus and arsenic are possible: and . These compounds are easily hydrolyzed by dilute and water.
Gallium trichloride is formed by the reaction of gallium metal with chlorine gas. Unlike the trifluoride, gallium(III) chloride exists as dimeric molecules, , with a melting point of 78 °C. Equivalent compounds are formed with bromine and iodine, and .
Like the other group 13 trihalides, gallium(III) halides are , reacting as halide acceptors with alkali metal halides to form salts containing anions, where X is a halogen. They also react with haloalkane to form and .
When heated to a high temperature, gallium(III) halides react with elemental gallium to form the respective gallium(I) halides. For example, reacts with Ga to form :
At lower temperatures, the equilibrium shifts toward the left and GaCl disproportionates back to elemental gallium and . GaCl can also be produced by reacting Ga with HCl at 950 °C; the product can be condensed as a red solid.
Gallium(I) compounds can be stabilized by forming adducts with Lewis acids. For example:
The so-called "gallium(II) halides", , are actually adducts of gallium(I) halides with the respective gallium(III) halides, having the structure . For example:
In the presence of dimethyl ether as solvent, polymerizes to . If no solvent is used, the dimer ( digallane) is formed as a gas. Its structure is similar to diborane, having two hydrogen atoms bridging the two gallium centers, unlike α- in which aluminium has a coordination number of 6.
Gallane is unstable above −10 °C, decomposing to elemental gallium and hydrogen.
Gallium trichloride is a common starting reagent for the formation of organogallium compounds, such as in carbometalation reactions. Gallium trichloride reacts with lithium cyclopentadienide in diethyl ether to form the trigonal planar gallium cyclopentadienyl complex GaCp3. Gallium(I) forms complexes with arene such as hexamethylbenzene. Because this ligand is quite bulky, the structure of the Ga(η6-C6Me6)+ is that of a half-sandwich. Less bulky ligands such as mesitylene allow two ligands to be attached to the central gallium atom in a bent sandwich structure. Benzene is even less bulky and allows the formation of dimers: an example is Ga(η6-C6H6)2 GaCl4·3C6H6.
+ Comparison between Mendeleev's 1871 predictions and the known properties of gallium |
Mendeleev further predicted that eka-aluminium would be discovered by means of the spectroscope, and that metallic eka-aluminium would dissolve slowly in both acids and alkalis and would not react with air. He also predicted that M2O3 would dissolve in acids to give MX3 salts, that eka- would form basic salts, that eka-aluminium sulfate should form , and that anhydrous MCl3 should have a greater volatility than ZnCl2: all of these predictions turned out to be true.
Gallium was discovered using spectroscopy by French chemist Paul-Émile Lecoq de Boisbaudran in 1875 from its characteristic spectrum (two violet lines) in a sample of sphalerite. Later that year, Lecoq obtained the free metal by electrolysis of the hydroxide in potassium hydroxide solution.
He named the element "gallia", from Latin Gallia meaning 'Gaul', a name for his native land of France. It was later claimed that, in a multilingual pun of a kind favoured by men of science in the 19th century, he had also named gallium after himself: Le coq is French for 'the rooster', and the Latin word for 'rooster' is gallus. In an 1877 article, Lecoq denied this conjecture.
Originally, de Boisbaudran determined the density of gallium as 4.7 g/cm3, the only property that failed to match Mendeleev's predictions; Mendeleev then wrote to him and suggested that he should remeasure the density, and de Boisbaudran then obtained the correct value of 5.9 g/cm3, that Mendeleev had predicted exactly.
From its discovery in 1875 until the era of semiconductors, the primary uses of gallium were high-temperature thermometrics and metal alloys with unusual properties of stability or ease of melting (some such being liquid at room temperature).
The development of gallium arsenide as a direct bandgap semiconductor in the 1960s ushered in the most important stage in the applications of gallium. In the late 1960s, the electronics industry started using gallium on a commercial scale to fabricate light emitting diodes, photovoltaics and semiconductors, while the metals industry used it to reduce the melting point of alloys.
First blue gallium nitride LED were developed in 1971-1973, but they were feeble. Only in the early 1990s Shuji Nakamura managed to combine GaN with indium gallium nitride and develop the modern blue LED, now making the basis of ubiquitous white LEDs, which Nichia commercialized in 1993. He and two other Japanese scientists received a Nobel in Physics in 2014 for this work.
Global gallium production slowly grew from several tens of t/year in the 1970s til ca. 2010, when it passed 100 t/yr and rapidly accelerated, by 2024 reaching about 450 t/yr.
The United States Geological Survey (USGS) estimates that more than 1 million tons of gallium is contained in known reserves of bauxite and zinc ores. Some coal flue contain small quantities of gallium, typically less than 1% by weight. However, these amounts are not extractable without mining of the host materials (see below). Thus, the availability of gallium is fundamentally determined by the rate at which bauxite, zinc ores, and coal are extracted.
During the processing of bauxite to aluminium oxide in the Bayer process, gallium accumulates in the sodium hydroxide liquor. From this it can be extracted by a variety of methods. The most recent is the use of ion-exchange resin. Achievable extraction efficiencies critically depend on the original concentration in the feed bauxite. At a typical feed concentration of 50 ppm, about 15% of the contained gallium is extractable. The remainder reports to the red mud and aluminium hydroxide streams. Gallium is removed from the ion-exchange resin in solution. Electrolysis then gives gallium metal. For semiconductor use, it is further purified with zone melting or single-crystal extraction from a melt (Czochralski process). Purities of 99.9999% are routinely achieved and commercially available.
Its by-product status means that gallium production is constrained by the amount of bauxite, sulfidic zinc ores (and coal) extracted per year. Therefore, its availability needs to be discussed in terms of supply potential. The supply potential of a by-product is defined as that amount which is economically extractable from its host materials per year under current market conditions (i.e. technology and price). Reserves and resources are not relevant for by-products, since they cannot be extracted independently from the main-products. Recent estimates put the supply potential of gallium at a minimum of 2,100 t/yr from bauxite, 85 t/yr from sulfidic zinc ores, and potentially 590 t/yr from coal. These figures are significantly greater than current production (375 t in 2016). Thus, major future increases in the by-product production of gallium will be possible without significant increases in production costs or price. The average price for low-grade gallium was $120 per kilogram in 2016 and $135–140 per kilogram in 2017.
In 2017, the world's production of low-grade gallium was tons—a decrease of 15% from 2016. China, Japan, South Korea, Russia, and Ukraine were the leading producers, while Germany ceased primary production of gallium in 2016. The yield of high-purity gallium was ca. 180 tons, mostly originating from China, Japan, Slovakia, UK and U.S. The 2017 world annual production capacity was estimated at 730 tons for low-grade and 320 tons for refined gallium. Galium. USGS (2018)
China produced tons of low-grade gallium in 2016 and tons in 2017. It also accounted for more than half of global LED production. As of July 2023, China accounted for between 80% and 95% of its production. In 2025, Rio Tinto partnered with Indium Corporation to mine the first primary gallium in North America.
Worldwide, gallium arsenide makes up 95% of the annual global gallium consumption. It amounted to $7.5 billion in 2016, with 53% originating from cell phones, 27% from wireless communications, and the rest from automotive, consumer, fiber-optic, and military applications. The recent increase in GaAs consumption is mostly related to the emergence of 3G and 4G , which employ up to 10 times the amount of GaAs in older models.
Gallium arsenide and gallium nitride can also be found in a variety of optoelectronic devices which had a market share of $15.3 billion in 2015 and $18.5 billion in 2016. Aluminium gallium arsenide (AlGaAs) is used in high-power infrared laser diodes. The semiconductors gallium nitride and indium gallium nitride are used in blue and violet optoelectronic devices, mostly and light-emitting diodes. For example, gallium nitride 405 nm diode lasers are used as a violet light source for higher-density Blu-ray Disc compact data disc drives.
Other major applications of gallium nitride are cable television transmission, commercial wireless infrastructure, power electronics, and satellites. The GaN radio frequency device market alone was estimated at $370 million in 2016 and $420 million in 2016.
Multijunction photovoltaic cells, developed for satellite power applications, are made by molecular-beam epitaxy or metalorganic vapour-phase epitaxy of of gallium arsenide, indium gallium phosphide, or indium gallium arsenide. The Mars Exploration Rovers and several satellites use triple-junction gallium arsenide on germanium cells. Gallium is also a component in photovoltaic compounds (such as copper indium gallium selenium sulfide ) used in solar panels as a cost-efficient alternative to crystalline silicon.
Because gallium wetting glass or porcelain, gallium can be used to create brilliant . When the wetting action of gallium-alloys is not desired (as in Galinstan glass thermometers), the glass must be protected with a transparent layer of gallium(III) oxide.
Due to their high surface tension and fluid mechanics, gallium-based liquid metals can be used to create by controlling the surface tension. Researchers have demonstrated the potentials of using liquid metal actuators as artificial muscle in robotic actuation.
The plutonium used in plutonium pit is stabilized in the δ phase and made machinable by alloying with gallium.
When gallium ions are mistakenly taken up in place of iron(III) by bacteria such as Pseudomonas, the ions interfere with respiration, and the bacteria die. This happens because iron is redox-active, allowing the transfer of electrons during respiration, while gallium is redox-inactive.
A complex amine-phenol Ga(III) compound MR045 is selectively toxic to parasites resistant to chloroquine, a common drug against malaria. Both the Ga(III) complex and chloroquine act by inhibiting crystallization of hemozoin, a disposal product formed from the digestion of blood by the parasites.
Gallium-68, a positron emitter with a half-life of 68 min, is now used as a diagnostic radionuclide in PET-CT when linked to pharmaceutical preparations such as DOTATOC, a somatostatin analogue used for neuroendocrine tumors investigation, and DOTA-TATE, a newer one, used for neuroendocrine metastasis and lung neuroendocrine cancer, such as certain types of microcytoma. Gallium-68's preparation as a pharmaceutical is chemical, and the radionuclide is extracted by elution from germanium-68, a synthetic radioisotope of germanium, in gallium-68 generators.
Ion source: Gallium is also used as a liquid metal ion source for a focused ion beam. For example, a focused gallium-ion beam was used to create the world's smallest book, Teeny Ted from Turnip Town. "Nano lab produces world's smallest book" . Simon Fraser University. 11 April 2007. Retrieved 31 January 2013.
Lubricants: Gallium serves as an additive in glide wax for skis and other low-friction surface materials.
Flexible electronics: Materials scientists speculate that the properties of gallium could make it suitable for the development of flexible and wearable devices.
Hydrogen generation: Gallium disrupts the protective oxide layer on aluminium, allowing water to react with the aluminium in AlGa to produce hydrogen gas.
Humor: A well-known practical joke among chemists is to fashion gallium spoons and use them to serve tea to unsuspecting guests, since gallium has a similar appearance to its lighter homolog aluminium. The spoons then melt in the hot tea.
Gallium has entered oceans mainly through aeolian input, but having gallium in our oceans can be used to resolve aluminium distribution in the oceans. The reason for this is that gallium is geochemically similar to aluminium, just less reactive. Gallium also has a slightly larger surface water residence time than aluminium. Gallium has a similar dissolved profile similar to that of aluminium, due to this gallium can be used as a tracer for aluminium. Gallium can also be used as a tracer of aeolian inputs of iron. Gallium is used as a tracer for iron in the northwest Pacific, south and central Atlantic Oceans. For example, in the northwest Pacific, low gallium surface waters, in the subpolar region suggest that there is low dust input, which can subsequently explain the following high-nutrient, low-chlorophyll environmental behavior.
Gallium halide complexes can be toxic. The Ga3+ ion of soluble gallium salts tends to form the insoluble hydroxide when injected in large doses; precipitation of this hydroxide resulted in nephrotoxicity in animals. In lower doses, soluble gallium is tolerated well and does not accumulate as a poison, instead being excreted mostly through urine. Excretion of gallium occurs in two phases: the first phase has a biological half-life of 1 hour, while the second has a biological half-life of 25 hours.
Inhaled Ga2O3 particles are probably toxic.
|
|