In physical geography, a fjord (also spelled fiord in New Zealand English; ) is a long, narrow sea inlet with steep sides or cliffs, created by a glacier. Fjords exist on the coasts of Antarctica, the Arctic, and surrounding landmasses of the northern and southern hemispheres. Norway's coastline is estimated to be long with its nearly 1,200 fjords, but only long excluding the fjords.
In the 19th century, Jens Esmark introduced the theory that fjords are or have been created by glaciers and that large parts of Northern Europe had been covered by thick ice in prehistory. Thresholds at the mouths and overdeepening of fjords compared to the ocean are the strongest evidence of glacial origin, and these thresholds are mostly rocky. Thresholds are related to sounds and low land where the ice could spread out and therefore have less erosive force. John Walter Gregory argued that fjords are of tectonic origin and that glaciers had a negligible role in their formation. Gregory's views were rejected by subsequent research and publications. In the case of Hardangerfjord the fractures of the Caledonian fold has guided the erosion by glaciers, while there is no clear relation between the direction of Sognefjord and the fold pattern. This relationship between fractures and direction of fjords is also observed in Lyngen.Randall, B. A. O. (1961). On the relationship of valley and fjord directions to the fracture pattern of Lyngen, Troms N. Norway. Geografiska Annaler, 43(3/4), 336–338. Preglacial, Tertiary rivers presumably eroded the surface and created valleys that later guided the glacial flow and erosion of the bedrock. This may in particular have been the case in Western Norway where the tertiary uplift of the landmass amplified eroding forces of rivers.
Confluence of tributary fjords led to excavation of the deepest fjord basins. Near the very coast, the typical West Norwegian glacier spread out (presumably through sounds and low valleys) and lost their concentration and reduced the glaciers' power to erode leaving bedrock thresholds. Bolstadfjorden is deep with a threshold of only ,Aarseth, I., Nesje, A., & Fredin, O. (2014). West Norwegian fjords. Geological Society of Norway (NGF), Trondheim, 2014. while the deep Sognefjorden has a threshold around deep. Hardangerfjord is made up of several basins separated by thresholds: The deepest basin Samlafjorden between Jonaneset (Jondal) and Ålvik with a distinct threshold at Vikingneset in Kvam Municipality.
are common along glaciated fjords and . A hanging valley is a tributary valley that is higher than the main valley and was created by tributary glacier flows into a glacier of larger volume. The shallower valley appears to be 'hanging' above the main valley or a fjord. Often, form at or near the outlet of the upper valley. Small waterfalls within these fjords are also used as freshwater resources. Hanging valleys also occur underwater in fjord systems. The branches of Sognefjord are for instance much shallower than the main fjord. The mouth of Fjærlandsfjord is about deep while the main fjord is nearby. The mouth of Ikjefjord is only deep while the main fjord is around at the same point.
During the summer season, there is usually a large inflow of river water in the inner areas. This freshwater gets mixed with saltwater creating a layer of brackish water with a slightly higher surface than the ocean which in turn sets up a current from the river mouths towards the ocean. This current is gradually more salty towards the coast and right under the surface current there is a reverse current of saltier water from the coast. In the deeper parts of the fjord the cold water remaining from winter is still and separated from the atmosphere by the brackish top layer. This deep water is ventilated by mixing with the upper layer causing it to warm and freshen over the summer. In fjords with a shallow threshold or low levels of mixing this deep water is not replaced every year and low oxygen concentration makes the deep water unsuitable for fish and animals. In the most extreme cases, there is a constant barrier of freshwater on the surface and the fjord freezes over such that there is no oxygen below the surface. Drammensfjorden is one example. The mixing in fjords predominantly results from the propagation of an internal tide from the entrance sill or internal seiching.Arneborg, L., Janzen, C., Liljebladh, B., Rippeth, T., Simpson, J. H. & Stigebrandt, A. (2004). Spatial variability of diapycnal mixing and turbulent dissipation rates in a stagnant fjord basin. Journal of Physical Oceanography, 34(7), 1679–1691
The Gaupnefjorden branch of is strongly affected by freshwater as a glacial river flows in. Velfjorden has little inflow of freshwater.
New Zealand's fjords are also host to , but a surface layer of dark fresh water allows these corals to grow in much shallower water than usual. An underwater observatory in Milford Sound allows tourists to view them without diving.Paddy Ryan. Fiords – Underwater rock walls and basins, Te Ara – the Encyclopedia of New Zealand. Updated 21 September 2007. Accessed 2008-04-18.
Skerries most commonly formed at the outlet of fjords where submerged glacially formed valleys perpendicular to the coast join with other cross valleys in a complex array. The island fringe of Norway is such a group of skerries (called a skjærgård); many of the cross fjords are so arranged that they parallel the coast and provide a protected channel behind an almost unbroken succession of mountainous islands and skerries. By this channel, one can travel through a protected passage almost the entire route from Stavanger to North Cape, Norway. The Blindleia is a skerry-protected waterway that starts near Kristiansand in southern Norway and continues past Lillesand. The Sweden coast along Bohuslän is likewise skerry guarded. The Inside Passage provides a similar route from Seattle, Washington, and Vancouver, British Columbia, to Skagway, Alaska. Yet another such skerry-protected passage extends from the Straits of Magellan north for .
In addition to nutrient flux, sediment carried by flowing glaciers can become suspended in the water column, increasing turbidity and reducing light penetration into greater depths of the fjord. This effect can limit the available light for photosynthesis in deeper areas of the water mass, reducing phytoplankton abundance beneath the surface.
Overall, phytoplankton abundance and species composition within fjords is highly seasonal, varying as a result of seasonal light availability and water properties that depend on glacial melt and the formation of sea ice. The study of phytoplankton communities within fjords is an active area of research, supported by groups such as FjordPhyto, a citizen science initiative to study phytoplankton samples collected by local residents, tourists, and boaters of all backgrounds.
The Norwegian word is inherited from Old Norse fjǫrðr, a noun which refers to a 'lake-like' body of water used for passage and ferrying and is closely related to the noun ferð "travelling, ferrying, journey".Nesje, A. (2009). Fjords of Norway: Complex Origin of a Scenic Landscape. In Geomorphological Landscapes of the World (pp. 223–234). Springer, Dordrecht.
The Scandinavian fjord, Proto-Norse * ferþuz, is the origin for similar Germanic words: Icelandic fjörður, Faroese language fjørður, Swedish language fjärd (for Baltic waterbodies), Scots language firth (for marine waterbodies, mainly in Scotland and northern England). The Norse noun fjǫrðr was adopted in German as Förde, used for the narrow long bays of Schleswig-Holstein, and in English as firth "fjord, river mouth". The English word ford (compare German language Furt, Low German Ford or Vörde, in Dutch language names voorde such as Vilvoorde, Ancient Greek πόρος, poros, and Latin portus) is assumed to originate from Germanic ferþu- and Indo-European root * meaning "crossing point". Fjord/firth/Förde as well as ford/Furt/Vörde/voorde refer to a Germanic noun for a travel: North Germanic ferd or färd and of the verb to travel, Dutch varen, German fahren; English to fare.
As a loanword from Norwegian, it is one of the few words in the English language to start with the sequence fj.fjeld is another The word was for a long time normally spelled f iord, a spelling preserved in place names such as Grise Fiord. The fiord spelling mostly remains only in New Zealand English, as in the place name Fiordland.
In old Norse Genitive case was fjarðar whereas Dative case was firði. The dative form has become common place names like Førde (for instance Førde), Fyrde or Førre (for instance Førre).Rygh, O. (1898). Norske Gaardnavne: Oplysninger samlede til Brug ved Matrikelens Revision. Kristiania: Fabritius.
The German use of the word Föhrde for long narrow bays on their Baltic Sea coastline, indicates a common Germanic origin of the word. The landscape consists mainly of moraine heaps. The Föhrden and some "fjords" on the east side of Jutland, Denmark are also of glacial origin. But while the glaciers digging "real" fjords moved from the mountains to the sea, in Denmark and Germany they were tongues of a huge glacier covering the basin of which is now the Baltic Sea. See Förden and East Jutland Fjorde.
Whereas fjord names mostly describe bays (though not always geological fjords), in the same regions typically are named Sund, in Scandinavian languages as well as in German. The word is related to "to sunder" in the meaning of "to separate". So the use of Sound to name fjords in North America and New Zealand differs from the European meaning of that word.
The name of Wexford in Ireland is originally derived from Veisafjǫrðr ("inlet of the mud flats") in Old Norse, as used by the Viking settlers—though the inlet at that place in modern terms is an estuary, not a fjord. Similarly the name of Milford Haven (now Milford Haven) in Wales is derived from Melrfjǫrðr ("sandbank fjord/inlet"), though the inlet on which it is located is actually a ria.
Before or in the early phase of Old Norse angr was another common noun for fjords and other inlets of the ocean. This word has survived only as a suffix in names of some Scandinavian fjords and has in same cases also been transferred to adjacent settlements or surrounding areas for instance Hardanger, Stavanger, and Geiranger.Rygh, O. (1896). Norske Fjordnavne. Kristiania: Aschehoug.Helle, Knut (1975). Stavanger: fra våg til by. Stavanger: Stabenfeldt. .
In the Danish language some inlets are called a fjord, but are, according to the English language definition, technically not a fjord, such as Roskilde Fjord. Limfjord in English terminology is a sound, since it separates the North Jutlandic Island (Vendsyssel-Thy) from the rest of Jutland. However, the Limfjord once was a fjord until the sea broke through from the west. Ringkøbing Fjord on the western coast of Jutland is a lagoon. The long narrow fjords of Denmark's Baltic Sea coast like the German Förden were dug by ice moving from the sea upon land, while fjords in the geological sense were dug by ice moving from the mountains down to the sea. However, some definitions of a fjord is: "A long narrow inlet consisting of only one inlet created by glacial activity". Examples of Danish fjords are: Kolding Fjord, Vejle Fjord and Mariager Fjord.
The fjords in Finnmark in Norway, which are fjords in the sense of the term, are not universally considered to be fjords by the scientific community,Bird, E.C.F. (2008) Coastal Geomorphology: An Introduction, 2nd ed. John Wiley and Sons Ltd. West Sussex, England. because although glacially formed, most Finnmark fjords lack the steep-sided valleys of the more southerly Norwegian fjords. The glacial pack was deep enough to cover even the high grounds when they were formed. The Oslofjord, on the other hand, is a rift valley, and not glacially formed.
The indigenous Māori people of New Zealand see a fjord as a kind of sea () that runs by a bluff (matapari, altogether tai matapari "bluff sea"). "New Zealand Geographic Features". New Zealand Geographic Board Ngā Pou Taunaha o Aotearoa. Toitū Te Whenua Land Information New Zealand.
One of Norway's largest is Tyrifjorden at above sea level and an average depth at most of the lake is under sea level. Norway's largest lake, Mjøsa, is also referred to as "the fjord" by locals.Gustav Indrebø (1924): Norske innsjønavn: Upplands fylke. Skrifter (Videnskabsselskapet i Kristiania), Historisk-filosofisk klasse. Another example is the freshwater fjord Movatnet (Mo lake) that until 1743 was separated from Romarheimsfjorden by an isthmus and connected by a short river. During a flood in November 1743, the river bed eroded and sea water could flow into the lake at high tide. Eventually, Movatnet became a saltwater fjord and renamed Mofjorden (). Bygdebok for Modalen og Eksingedalen. Bind 2. Sogenemnda, 1990. Like fjords, freshwater lakes are often deep. For instance Hornindalsvatnet is at least deep and water takes an average of 16 years to flow through the lake. NVE Atlas. Vassdrag – Innsjødatabase – Dybdekart (National lakes database). Norges vassdrags- og energidirektorat (Norwegian Water Resources and Energy Directorate). Accessed 13 June 2015 Such lakes created by glacial action are also called fjord lakes or moraine-dammed lakes.
Some of these lakes were salt after the ice age but later cut off from the ocean during the post-glacial rebound. At the end of the ice age Eastern Norway was about lower (the marine limit). When the ice cap receded and allowed the ocean to fill valleys and lowlands, and lakes like Mjøsa and Tyrifjorden were part of the ocean while Drammen valley was a narrow fjord. At the time of the Viking Age Drammensfjord was still higher than today and reached the town of Hokksund, while parts of what is now the city of Drammen was under water. After the ice age the ocean was about at Notodden. The ocean stretched like a fjord through Heddalsvatnet all the way to Hjartdal. Post-glacial rebound eventually separated Heddalsvatnet from the ocean and turned it into a freshwater lake. Telemark. Oslo: Gyldendal. 1975. . Norge sett fra luften. Oslo: Det Beste. 1980. . In Neolithic times Heddalsvatnet was still a saltwater fjord connected to the ocean, and was cut off from the ocean around 1500 BC.Mikkelsen, Egil (1989). Fra jeger til bonde: utviklingen av jordbrukssamfunn i Telemark i steinalder og bronsealder. Oslo: Universitetets oldsaksamling. .
Some freshwater fjords such as Slidrefjord are above the marine limit.
Like freshwater fjords, the continuation of fjords on land are in the same way denoted as fjord-valleys. For instance Flåmsdal (Flåm valley) and Måbødalen.Hansen, L., Eilertsen, R. S., Solberg, I. L., Sveian, H., & Rokoengen, K. (2007). Facies characteristics, morphology and depositional models of clay-slide deposits in terraced fjord valleys, Norway. Sedimentary Geology, 202(4), 710–729.Lidmar-Bergström, K., Ollier, C. D., & Sulebak, J. R. (2000). Landforms and uplift history of southern Norway. Global and Planetary Change, 24(3), 211–231.
Outside of Norway, the three western arms of New Zealand's Lake Te Anau are named North Fiord, Middle Fiord and South Fiord. Another freshwater "fjord" in a larger lake is Western Brook Pond, in Newfoundland's Gros Morne National Park; it is also often described as a fjord, but is actually a freshwater lake cut off from the sea, so is not a fjord in the English sense of the term. Locally they refer to it as a "landlocked fjord". Such lakes are sometimes called "fjord lakes". Okanagan Lake was the first North American lake to be so described, in 1962. The bedrock there has been eroded up to below sea level, which is below the surrounding regional topography. Fjord lakes are common on the inland lea of the Coast Mountains and Cascade Range; notable ones include Lake Chelan, Seton Lake, Chilko Lake, and Atlin Lake. Kootenay Lake, Slocan Lake and others in the basin of the Columbia River are also fjord-like in nature, and created by glaciation in the same way. Along the British Columbia Coast, a notable fjord-lake is Owikeno Lake, which is a freshwater extension of Rivers Inlet. Quesnel Lake, located in central British Columbia, is claimed to be the deepest fjord formed lake on Earth.
Coral reefs
Skerries
Phytoplankton
Epishelf lakes
Etymology
Scandinavian usage
Differences in definitions
"Fjords" not created by glaciers
Freshwater fjords
Great Lakes
Locations
Principal fjord regions
Other glaciated or formerly glaciated regions
Extreme fjords
Deep fjords include:
Heritage fjords
See also
Bibliography
External links
|
|