Product Code Database
Example Keywords: linux -cap $39-171
barcode-scavenger
   » » Wiki: Aldolase A
Tag Wiki 'Aldolase A'.
Tag

Aldolase A ( ALDOA, or ALDA), also known as fructose-bisphosphate aldolase, is an that in humans is encoded by the ALDOA gene on chromosome 16.

The protein encoded by this gene is a enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP). Three isozymes (A, B, and C), encoded by three different genes, are differentially expressed during development. Aldolase A is found in the developing embryo and is produced in even greater amounts in adult muscle. Aldolase A expression is repressed in adult liver, kidney and intestine and similar to levels in brain and other nervous tissue. Aldolase A deficiency has been associated with and . Alternative splicing and alternative promoter usage results in multiple transcript variants. Related have been identified on chromosomes 3 and 10.


Structure
ALDOA is a and one of the three aldolase isozymes (A, B, and C), encoded by three different genes. The ALDOA gene contains 8 and the 5' UTR IB. Key responsible for its catalytic function have been identified. The Tyr363 functions as the acid–base catalyst for protonating C3 of the substrate, while Lys146 is proposed to stabilize the negative charge of the resulting of Tyr363 and the strained configuration of the . Residue Glu187 participates in multiple functions, including FBP aldolase catalysis, acid–base catalysis during substrate binding, , and substrate cleavage. Though ALDOA localizes to the nucleus, it lacks any known nuclear localization signals (NLS).


Mechanism
In mammalian aldolase, the key catalytic residues involved in the reaction are and . The tyrosine acts as an efficient hydrogen acceptor while the lysine covalently binds and stabilizes the intermediates. Many use two in place of the lysine.

The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.


Function
ALDOA is a key enzyme in the fourth step of glycolysis, as well as in the reverse pathway . It catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate by cleavage of the C3–C4 bond. As a result, it is a crucial player in ATP . ALDOA also contributes to other "moonlighting" functions such as muscle maintenance, regulation of cell shape and motility, contraction, organization, and regulation of cell proliferation. ALDOA likely regulates actin cytoskeleton remodeling through interacting with cytohesin-2 (ARNO) and Arf6.

ALDOA is ubiquitously expressed in most tissues, though it is predominantly expressed in developing embryo and adult muscle. In , ALDOA is the predominant aldolase isoform. Within the cell, ALDOA typically localizes to the , but it can localize to the during of the S phase. This nuclear localization is regulated by the protein and p38. It is suggested that the nucleus serves as a reservoir for ALDOA in low glucose conditions. ALDOA has also been found in .

ALDOA is regulated by the energy metabolism substrates , , and . In human (MCs), ALDOA has been observed to undergo post-translational regulation by protein , which may alter its relative affinity for FBP and/or IP3. This change then affects IP3 and PLC signaling cascades in IgE-dependent responses.


Clinical significance
Aldolase A (ALDOA) is highly expressed in multiple cancers, including lung squamous cell carcinoma (LSCC), , and hepatocellular carcinoma. It is proposed that ALDOA overexpression enhances glycolysis in these tumor cells, promoting their growth. In LSCC, its upregulation correlates with and poor prognosis, while its downregulation reduces tumor cell motility and . Thus, ALDOA could be a potential LSCC and therapeutic drug target.

Aldolase A deficiency is a rare, disorder that is linked to and accompanied by weakness, muscle pain, and .


Interactive pathway map

Interactions
Aldolase A has been shown to interact with:

  • PLD2,
  • ,
  • GLUT4,
  • D2,
  • light chain 8 of ,
  • erythrocyte anion exchanger Band 3 protein,
  • ryanodine receptor,
  • Cytohesin-2, and
  • (vacuolar-type H+-ATPase).


See also


Further reading

External links
  • http://pdbdev.sdsc.edu:48346/pdb/molecules/pdb50_5.html
  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Fructose-bisphosphate aldolase A

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time