Vitis vinifera, the common grape vine, is a species of flowering plant, native to the Mediterranean region, Central Europe, and southwestern Asia, from Morocco and Portugal north to southern Germany and east to northern Iran. , there were between 5,000 and 10,000 varieties of Vitis vinifera grapes though only a few are of commercial significance for wine and table grape production.
The wild grape is often classified as Vitis vinifera sylvestris (in some classifications considered Vitis sylvestris), with Vitis vinifera vinifera restricted to cultivated forms. Domesticated vines have hermaphrodite flowers, but sylvestris is plant sexuality (male and female flowers on separate plants) and pollination is required for fruit to develop.
Grapes can be eaten fresh or dried to produce raisins, sultanas, and Zante currant. Grape leaves are used in the cuisine of many cultures. The fresh grapes can also be processed into grape juice that is fermented to make wine and vinegar. Cultivars of Vitis vinifera form the basis of the majority of wines produced around the world. All of the familiar wine varieties belong to Vitis vinifera, which is cultivated on every continent except for Antarctica, and in all the major wine regions of the world.
The grapevine is referenced 55 times in the Hebrew Bible (Old Testament), along with grapes and wine, which are also frequently mentioned (55 and 19, respectively). The Bible lists the grapevine as one of the Seven Species of the Land of Israel, and frequently uses it as a symbol of the Israelites as the chosen people., A detailed description of vineyard maintenance is provided in the Book of Isaiah (5:1–7).
Hesiod in his Works and Days gives detailed descriptions of grape harvests and wine making techniques, and there are also many references in Homer. Greek colonists then introduced these practices in their colonies, especially in southern Italy (Magna Graecia), which was even known as Enotria due to its propitious climate.
The Etruscans improved wine making techniques and developed an export trade even beyond the Mediterranean basin. The ancient Romans further developed the techniques learnt from the Etruscans, as shown by numerous works of literature containing information that remains valid: De Agri Cultura (around 160 BC) by Cato the Elder, De re rustica by Marcus Terentius Varro, the Georgics by Virgil and De re rustica by Columella.
During the 3rd and 4th centuries AD, the long crisis of the Roman Empire generated instability in the countryside which led to a reduction of viticulture in general, which was mainly sustained only close to towns and cities and along coastlines.
Grapes followed European colonies around the world, coming to North America around the 17th century, and to Africa, South America and Australia. In North America it formed hybrids with native species from the genus Vitis; some of these were intentional hybrids created to combat phylloxera, an insect pest which affected the European grapevine to a much greater extent than North American ones and in fact managed to devastate European wine production in a matter of years. Later, North American rootstocks became widely used to graft V. vinifera cultivars so as to withstand the presence of phylloxera.
In 2007, Vitis vinifera was the fourth angiosperm species whose genome was completely sequenced. These data contributed significantly to understanding the evolution of plants and also how the aromatic characteristics of wine are determined in part by the plant's genes. This work was a collaboration between Italian researchers (Consorzio Interuniversitario Nazionale per la Biologia Molecolare delle Piante, Istituto di Genomica Applicata) and French researchers (Genoscope and Institut National de la Recherche Agronomique).
Also in 2007, scientists from Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO), working in the Cooperative Research Centre for Viticulture, reported that their "research suggests that extremely rare and independent mutations in two genes VvMYBA1 produced a single white grapevine that was the parent of almost all of the world's white grape varieties. If only one gene had been mutated, most grapes would still be red and we would not have the more than 3000 white grape cultivars available today."
The vine attaches to supports by tendrils. The stems, called twigs, grow through their tip, the cauline apex. A branch consists of several internodes separated by knots, which grow the leaves, flowers, tendrils and between-core and where to train future buds. During their hardening, the twigs become woody branches that can reach a great length. Its roots usually sink to a depth of two to five meters and sometimes up to 12–15 meters or even more.
The species typically occurs in humid forests and streamsides.
The fruit is a berry, known as a grape that is ovoid or globular, dark blue or greenish, usually two-locular with five seeds; in the wild species it is diameter and ripens dark purple to blackish with a pale wax bloom; in cultivated plants it is usually much larger, up to long, and can be green, red, or purple (black).
In Europe, Vitis vinifera is concentrated in the central and southern regions; in Asia, in the western regions such as Anatolia, the Caucasus, the Middle East, and in China; in Africa, along the northern Mediterranean coast and in South Africa; in North America, in California and also other areas like Michigan, New Mexico, New York, Oregon, Virginia, Washington state, British Columbia, Ontario and Québec; in South America in Chile, Argentina, Uruguay, Peru and Brazil; and in Oceania in Australia and New Zealand.
Using the sap of grapevines, European folk healers sought to cure skin and eye diseases. Other historical uses include the Leaf being used to stop bleeding, pain and inflammation of hemorrhoids. Unripe grapes were used for treating sore throats, and raisins were given as treatments for consumption (tuberculosis), constipation and thirst. Ripe grapes were used for the treatment of cancer, cholera, smallpox, nausea, skin and eye infections as well as kidney disease and .
Seedless grape varieties were developed to appeal to consumers, but researchers are now discovering that many of the healthful properties of grapes may actually come from the seeds themselves, thanks to their enriched phytochemical content.
Grapevine leaves are filled with minced meat (such as lamb, pork or beef), rice and onions in the making of Balkan traditional dolma.
A popular cultivar in Australia, Vitis 'Ornamental Grape', derived from Vitis vinifera x Vitis rupestris, is used in gardens for its impressive foliage that turn brilliant red, scarlet, purple and/or orange in autumn. Originally bred in France, it thrives in a range of climates from hot and dry, to cool moist and subtropical, with different soil types benefitting the plant. Ornamental Grape Yates, a division of DuluxGroup (Australia) Pty Ltd.
Of all environmental factors, temperature seems to have the most profound effect on viticulture as the temperature during the winter dormancy affects the budding for the following growing season. Prolonged high temperature can have a negative impact on the quality of the grapes as well as the wine as it affects the development of grape components that give colour, aroma, accumulation of sugar, the loss of acids through respiration as well as the presence of other flavour compounds that give grapes their distinctive traits. Sustained intermediate temperatures and minimal day-to-day variability during the growth and ripening periods are favourable. Grapevine annual growth cycles begin in spring with bud break initiated by consistent day time temperatures of 10 degrees Celsius. The unpredictable nature of climate change may also bring occurrences of frosts which may occur outside of the usual winter periods. Frosts cause lower yields and effects grape quality due to reduction of bud fruitfulness and therefore grapevine production benefits from frost free periods.
Organic acids are essential in wine quality. The phenolic compounds such as and tannins help give the wine its colour, bitterness, astringency and anti-oxidant capacity. Research has shown that grapevines exposed to temperature consistently around 30 degrees Celsius had significantly lower concentrations of anthocyanins compared to grapevines exposed to temperatures consistently around 20 degrees Celsius. Temperatures around or exceeding 35 degrees Celsius are found to stall anthocyanin production as well as degrade the anthocyanins that are produced. Furthermore, anthocyanins were found to be positively correlated to temperatures between 16 – 22 degrees Celsius from veraison (change of colour of the berries) to harvest. Tannins give wine astringency and a "drying in the mouth" taste and also bind onto anthocyanin to give more stable molecular molecules which are important in giving long term colour in aged red wines. As the presence of phenolic compounds in wine are affected heavily by temperature, an increase in average temperatures will affect their presence in wine regions and will therefore affect grape quality.
Altered precipitation patterns are also anticipated (both annually and seasonally) with rainfall occurrences varying in amount and frequency. Increases in the amount of rainfall have will likely cause an increase in soil erosion; while occasional lack of rainfall, in times when it usually occurs, may result in drought conditions causing stress on grapevines. Rainfall is critical at the beginning of the growing season for the budburst and inflorescence development while consistent dry periods are important for the flowering and ripening periods.
Increased CO2 levels will likely have an effect on the photosynthesis in grapevines as photosynthesis is stimulated by a rise in CO2 and has been known to also lead to an increase leaf area and vegetative dry weight. Raised atmospheric CO2 is also believed to result in partial closure which indirectly leads to increased leaf temperatures. A rise in leaf temperatures may alter RuBisCO (RuBisCo) relationship with carbon dioxide and oxygen which will also affect the plants' photosynthesis capabilities. Raised atmospheric carbon dioxide is also known to decrease the stomatal density of some grapevine varieties.
There is considerable variation among grape genomes. For instance, the genome of the Vitis vinifera cultivar Mgaloblishvili is much larger than that of V. vinifera ssp. vinifera, with a genome size of 986 Mbp, encoding 58,912 predicted protein-coding genes. For comparison, the human genome only encodes about 20,000 protein-coding genes.
Cultivars like Graciano may also contain :
|
|