Tunicates are marine invertebrates belonging to the subphylum Tunicata ( ). This grouping is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and (including vertebrates). The subphylum was at one time called Urochordata, and the term urochordates is still sometimes used for these animals.
Despite their simple appearance and very different adult form, their close relationship to the vertebrates is certain. Both groups are chordates, as evidenced by the fact that during their mobile larval stage, tunicates possess a notochord, a hollow dorsal nerve cord, , post-anal tail, and an endostyle. They resemble a tadpole.
Tunicates are the only chordates that have lost their Myomere segmentation, with the possible exception of the seriation of the gill slits. However, Doliolida still display segmentation of the muscle bands.
Some tunicates live as solitary individuals, but others replicate by budding and become colonies, each unit being known as a zooid. They are marine with a water-filled, sac-like body structure and two tubular openings, known as siphons, through which they draw in and expel water. During their respiration and feeding, they take in water through the incurrent (or inhalant) siphon and expel the filtered water through the excurrent (or exhalant) siphon. Adult ascidian tunicates are sessile, immobile and permanently attached to rocks or other hard surfaces on the ocean floor. (pyrosomes, doliolids, and salps) and on the other hand, swim in the pelagic zone of the sea as adults.
Various species of Ascidiacea, the most well-known class of tunicates, are commonly known as , sea pork, sea livers, or .
The earliest probable species of tunicate appears in the fossil record in the early Cambrian period.
The Tunicata were established by Jean-Baptiste Lamarck in 1816. In 1881, Francis Maitland Balfour introduced another name for the same group, "Urochorda", to emphasize the affinity of the group to other chordates.Foster, M. (ed.); Sedgwick, Adam (ed.); The Works of Francis Maitland Balfour. Vol. III. Memorial edition. Pub: Macmillan and co. 1885. May be downloaded from [1] No doubt largely because of his influence, various authors supported the term, either as such, or as the slightly older "Urochordata", but this usage is invalid because "Tunicata" has precedence, and grounds for superseding the name never existed. Accordingly, the current (formally correct) trend is to abandon the name Urochorda or Urochordata in favour of the original Tunicata, and the name Tunicata is almost invariably used in modern scientific works. It is accepted as valid by the World Register of Marine Species Tunicata World Register of Marine Species. Retrieved 2011-11-12. but not by the Integrated Taxonomic Information System. Tunicata Lamarck, 1816 Integrated Taxonomic Information System. Retrieved 2017-03-30.
Various common names are used for different species. Sea tulips are tunicates with colourful bodies supported on slender stalks. Sea squirts are so named because of their habit of contracting their bodies sharply and squirting out water when disturbed. Sea liver and sea pork get their names from the resemblance of their dead colonies to pieces of meat.
The clade consisting of tunicates and vertebrates is called Olfactores.Jefferies, R. P. S. (1991) in Biological Asymmetry and Handedness (eds Bock, G. R.; Marsh, J.) pp. 94–127 (Wiley, Chichester).
The Tunicata contain roughly 3,051 described species, traditionally divided into these classes:
Members of the Sorberacea were included in Ascidiacea in 2011 as a result of ribosomal DNA sequencing studies. Although the traditional classification is provisionally accepted, newer evidence suggests the Ascidiacea are an artificial group of paraphyletic status. A close relationship between Thaliacea and Ascidiacea, with the former possibly emerging from the latter, had already been proposed since the early 20th century under the name of Acopa.
The following cladogram is based on the 2018 phylogenomic study of Delsuc and colleagues.
Three enigmatic species were also found from the Ediacaran period – Ausia fenestrata from the Nama Group of Namibia, the sac-like Yarnemia, and one from a second new Ausia-like genus from the Onega Peninsula of northern Russia, Burykhia. Results of a new study have shown possible affinity of these Ediacaran organisms to the ascidians.Vickers-Rich P. (2007). "Chapter 4. The Nama Fauna of Southern Africa". In: Fedonkin, M. A.; Gehling, J. G.; Grey, K.; Narbonne, G. M.; Vickers-Rich, P. "The Rise of Animals: Evolution and Diversification of the Kingdom Animalia", Johns Hopkins University Press. pp. 69–87Fedonkin, M. A.; Vickers-Rich, P.; Swalla, B.; Trusler, P.; Hall, M. (2008). "A Neoproterozoic chordate with possible affinity to the ascidians: New fossil evidence from the Vendian of the White Sea, Russia and its evolutionary and ecological implications". HPF-07 Rise and fall of the Ediacaran (Vendian) biota. International Geological Congress - Oslo 2008. Ausia and Burykhia lived in shallow coastal waters slightly more than 555 to 548 million years ago, and are believed to be the oldest evidence of the chordate lineage of metazoans. The Russian Precambrian fossil Yarnemia is identified as a tunicate only tentatively, because its fossils are nowhere near as well-preserved as those of Ausia and Burykhia, so this identification has been questioned.
Fossils of tunicates are rare because their bodies decay soon after death, but in some tunicate families, microscopic spicules are present, which may be preserved as microfossils. These spicules have occasionally been found in Jurassic and later rocks, but, as few palaeontologists are familiar with them, they may have been mistaken for .
In the Permian and the Triassic, there were also forms with a calcareous exoskeleton. At first, they were mistaken for corals. A rare case of an evolutionary late and ephemeral biomineralization: tunicates with composite calcareous skeletons
The Thaliacea, the other main class of tunicates, is characterised by free-swimming, pelagic individuals. They are all filter feeders using a pharyngeal mucous net to catch their prey. The are Bioluminescence colonial tunicates with a hollow cylindrical structure. The buccal siphons are on the outside and the atrial siphons inside. About ten species are known, and all are found in the tropics. The 23 species of Doliolida are small, mostly under long. They are solitary, have the two siphons at opposite ends of their barrel-shaped bodies, and swim by jet propulsion. The 40 species of Salpida are also small, under long, and found in the surface waters of both warm and cold seas. They also move by jet propulsion, and often form long chains by budding off new individuals.
A third class, the Larvacea (or Appendicularia), is the only group of tunicates to retain their chordate characteristics in the adult state, a product of extensive neoteny. The 70 species of larvaceans superficially resemble the tadpole larvae of amphibians, although the tail is at right angles to the body. The notochord is retained, and the animals, mostly under 1 cm long, are propelled by undulations of the tail. They secrete an external mucous net known as a house, which may completely surround them and is very efficient at trapping planktonic particles.
Ascidian tunicates begin life as a lecithotrophic (non-feeding) mobile larva that resembles a tadpole, with the exception of some members of the families Styelidae and Molgulidae which has direct development.
Tunicates have a well-developed heart and circulatory system. The heart is a double U-shaped tube situated just below the gut. The blood vessels are simple connective tissue tubes, and their blood has several types of Blood cell. The blood may appear pale green, but this is not due to any respiratory pigments, and oxygen is transported dissolved in the Blood plasma. Exact details of the circulatory system are unclear, but the gut, pharynx, gills, gonads, and nervous system seem to be arranged in series rather than in parallel, as happens in most other animals. Every few minutes, the heart stops beating and then restarts, pumping fluid in the reverse direction.
Tunicate blood has some unusual features. In some species of Ascidiidae and Perophoridae, it contains high concentrations of the transitional metal vanadium and Vanabins in in blood cells known as . Some tunicates can concentrate vanadium up to a level ten million times that of the surrounding seawater. It is stored in a +3 oxidation form that requires a pH of less than 2 for stability, and this is achieved by the vacuoles also containing sulfuric acid. The vanadocytes are later deposited just below the outer surface of the tunic, where their presence is thought to deter predation, although it is unclear whether this is due to the presence of the metal or low pH. Other species of tunicates concentrate lithium, iron, niobium, and tantalum, which may serve a similar function.
Tunicates lack the kidney-like Nephridium organs typical of . Most have no excretory structures, but rely on the diffusion of ammonia across their tissues to rid themselves of nitrogenous waste, though some have a simple excretory system. The typical Kidney organ is a mass of large clear-walled vesicles that occupy the rectal loop, and the structure has no duct. Each vesicle is a remnant of a part of the primitive coelom, and its cells extract nitrogenous waste matter from circulating blood. They accumulate the wastes inside the vesicles as Uric acid, and do not have any obvious means of disposing of the material during their lifetimes.
Adult tunicates have a hollow cerebral ganglion, equivalent to a brain, and a hollow structure known as a neural gland. Both originate from the embryonic neural tube and are located between the two siphons. Nerves arise from the two ends of the ganglion; those from the anterior end innervate the buccal siphon and those from the posterior end supply the rest of the body, the atrial siphon, organs, gut and the musculature of the body wall. There are no sense organs but there are sensory cells on the siphons, the buccal tentacles and in the atrium.
Tunicates are unusual among animals in that they produce a large fraction of their tunic and some other structures in the form of cellulose. The production in animals of cellulose is so unusual that at first some researchers denied its presence outside of plants, but the tunicates were later found to possess a functional cellulose synthase, encoded by a gene horizontally transferred from a bacterium. When, in 1845, Carl Schmidt first announced the presence in the test of some ascidians of a substance very similar to cellulose, he called it "tunicine", but it is now recognized as cellulose rather than any alternative substance.
Some ascidians that live on soft sediments are . A few deepwater species, such as Megalodicopia hians, are Ambush predator, trapping tiny crustacea, nematodes, and other small invertebrates with the muscular lobes which surround their buccal siphons. Certain tropical species in the family Didemnidae have Symbiosis green algae or cyanobacteria in their tunics, and one of these symbionts, Prochloron, is unique to tunicates. Excess Photosynthesis products are assumed to be available to the host.
When sufficiently developed, the larva of the sessile species finds a suitable rock and cements itself in place. The larval form is not capable of feeding, though it may have a rudimentary digestive system, and is only a dispersal mechanism. Many physical changes occur to the tunicate's body during metamorphosis, one of the most significant being the reduction of the cerebral ganglion, which controls movement and is the equivalent of the vertebrate brain. From this comes the common saying that the sea squirt "eats its own brain". However, the adult does possess a cerebral ganglion adapted to lack of self-locomotion. In the Thaliacea, the larval stage is rudimentary or suppressed, and the adults are pelagic (swimming or drifting in the open sea). Colonial forms also increase the size of the colony by budding off new individuals to share the same tunic.
Pyrosome colonies grow by budding off new zooids near the posterior end of the colony. Sexual reproduction starts within a zooid with an internally fertilized egg. This develops directly into an oozooid without any intervening larval form. This buds precociously to form four blastozooids which become detached in a single unit when the oozoid disintegrates. The atrial siphon of the oozoid becomes the exhalent siphon for the new, four-zooid colony.
Doliolida have a very complex life cycle that includes various zooids with different functions. The sexually reproducing members of the colony are known as gonozooids. Each one is a hermaphrodite with the eggs being fertilised by sperm from another individual. The gonozooid is Viviparity, and at first, the developing embryo feeds on its yolk sac before being released into the sea as a free-swimming, tadpole-like larva. This undergoes metamorphosis in the water column into an oozooid. This is known as a "nurse" as it develops a tail of zooids produced by budding asexually. Some of these are known as trophozooids, have a nutritional function, and are arranged in lateral rows. Others are phorozooids, have a transport function, and are arranged in a single central row. Other zooids link to the phorozooids, which then detach themselves from the nurse. These zooids develop into gonozooids, and when these are mature, they separate from the phorozooids to live independently and start the cycle over again. Meanwhile, the phorozooids have served their purpose and disintegrate. The asexual phase in the lifecycle allows the doliolid to multiply very rapidly when conditions are favourable.
Salps also have a complex lifecycle with an alternation of generations. In the life history phase, an oozoid reproduces asexually, producing a chain of tens or hundreds of individual zooids by budding along the length of a stolon. The chain of salps is the 'aggregate' portion of the lifecycle. The aggregate individuals, known as blastozooids, remain attached together while swimming and feeding and growing larger. The blastozooids are sequential hermaphrodites. An egg in each is fertilized internally by a sperm from another colony. The egg develops in a brood sac inside the blastozooid and has a placental connection to the circulating blood of its "nurse". When it fills the blastozooid's body, it is released to start the independent life of an oozooid.
Larvaceans only reproduce sexually. They are protandrous hermaphrodites, except for Oikopleura dioica which is gonochoric, and a larva resembles the tadpole larva of ascidians. Once the trunk is fully developed, the larva undergoes "tail shift", in which the tail moves from a rearward position to a ventral orientation and twists through 90° relative to the trunk. The larva consists of a small, fixed number of cells, and grows by enlargement of these rather than cell division. Development is very rapid and only takes seven hours for a zygote to develop into a house-building juvenile starting to feed.
During embryonic development, tunicates exhibit determinate cleavage, where the fate of the cells is set early on with reduced cell numbers and that are rapidly evolving. In contrast, the amphioxus and vertebrates show cell determination relatively late in development and cell cleavage is indeterminate. The genome evolution of amphioxus and vertebrates is also relatively slow.
Botryllus schlosseri (class Ascidiacea) is a colonial tunicate, a member of the only group of chordates that are able to reproduce both sexually and asexually. B. schlosseri is a sequential (protogynous) hermaphrodite, and in a colony, eggs are ovulated about two days before the peak of sperm emission. Thus self-fertilization is avoided, and cross-fertilization is favored. Although avoided, self-fertilization is still possible in B. schlosseri. Self-fertilized eggs develop with a substantially higher frequency of anomalies during cleavage than cross-fertilized eggs (23% vs. 1.6%). Also a significantly lower percentage of larvae derived from self-fertilized eggs metamorphose, and the growth of the colonies derived from their metamorphosis is significantly lower. These findings suggest that self-fertilization gives rise to inbreeding depression associated with developmental deficits that are likely caused by expression of deleterious recessive mutations.
Invasive tunicates usually arrive as fouling organisms on the hulls of ships, but may also be introduced as larvae in ballast water. Another possible means of introduction is on the shells of molluscs brought in for marine cultivation. Current research indicates many tunicates previously thought to be indigenous to Europe and the Americas are, in fact, invaders. Some of these invasions may have occurred centuries or even millennia ago. In some areas, tunicates are proving to be a major threat to aquaculture operations.
Some tunicates are used as . Ciona intestinalis and Ciona savignyi have been used for developmental studies. Both species' mitochondrial and nuclear genomes have been sequenced. The nuclear genome of the appendicularian Oikopleura dioica appears to be one of the smallest among metazoans and this species has been used to study gene regulation and the evolution and development of chordates.
Fossil record
Hybridization studies
Anatomy
Body form
Body structure
Physiology and internal anatomy
Feeding
Life cycle
Promotion of out-crossing
A model tunicate
Invasive species
Use by humans
Medical uses
Tunicates are able to correct their own cellular abnormalities over a series of generations, and a similar regenerative process may be possible for humans. The mechanisms underlying the phenomenon may lead to insights about the potential of cells and tissues to be reprogrammed and to regenerate compromised human organs.
As food
Other uses
See also
External links
|
|