Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolysis .
Trypsin was discovered in 1876 by Wilhelm Kühne. Although many sources say that Kühne named trypsin from the Ancient Greek word for rubbing, 'tripsis', because the enzyme was first isolated by rubbing the pancreas with glass powder and alcohol, in fact Kühne named trypsin from the Ancient Greek word 'thrýpto' which means 'I break' or 'I break apart'.
Trypsin is produced as the inactive zymogen trypsinogen in the pancreas. When the pancreas is stimulated by cholecystokinin, it is then secreted into the first part of the small intestine (the duodenum) via the pancreatic duct. Once in the small intestine, the enzyme enteropeptidase (also called enteropeptidase) activates trypsinogen into trypsin by proteolytic cleavage. The trypsin then activates additional trypsin, chymotrypsin and carboxypeptidase.
The negative aspartate residue (Asp 189) located in the catalytic pocket (S1) of trypsin is responsible for attracting and stabilizing positively charged lysine and/or arginine, and is, thus, responsible for the specificity of the enzyme. This means that trypsin predominantly cleaves at the carboxyl side (or "C-terminal side") of the lysine and arginine except when either is bound to a C-terminal proline, although large-scale mass spectrometry data suggest cleavage occurs even with proline. Trypsin is considered an endopeptidase, i.e., the cleavage occurs within the polypeptide chain rather than at the terminal amino acids located at the ends of peptide.
As a protein, trypsin has various molecular weights depending on the source. For example, a molecular weight of 23.3 kDa is reported for trypsin from bovine and porcine sources.
The activity of trypsin is not affected by the enzyme inhibitor tosyl phenylalanyl chloromethyl ketone, TPCK, which deactivates chymotrypsin.
Trypsin should be stored at very cold temperatures (between −20 and −80 °C) to prevent autolysis, which may also be impeded by storage of trypsin at pH 3 or by using trypsin modified by reductive methylation. When the pH is adjusted back to pH 8, activity returns.
In a tissue culture lab, trypsin is used to resuspend cells adherent to the cell culture dish wall during the process of harvesting cells. Some cell types adhere to the sides and bottom of a dish when cultivated in vitro. Trypsin is used to cleave proteins holding the cultured cells to the dish, so that the cells can be removed from the plates.
Trypsin can also be used to dissociate dissected cells (for example, prior to cell fixing and sorting).
Trypsin can be used to break down casein in breast milk. If trypsin is added to a solution of milk powder, the breakdown of casein causes the milk to become translucent. The rate of reaction can be measured by using the amount of time needed for the milk to turn translucent.
Trypsin is commonly used in biological research during proteomics experiments to digest proteins into peptides for mass spectrometry analysis, e.g. in-gel digestion. Trypsin is particularly suited for this, since it has a very well defined specificity, as it hydrolyzes only the peptide bonds in which the carbonyl group is contributed either by an arginine or lysine residue.
Trypsin can also be used to dissolve blood clots in its microbial form and treat inflammation in its pancreatic form.
In veterinary medicine, trypsin is an ingredient in wound spray products, such as Debrisol, to dissolve dead tissue and pus in wounds in horses, cattle, dogs, and cats.
Trypsin inhibitors can serve as tools when addressing metabolic and obesity disorders. Metabolic disorders, obesity, and being overweight are known to increase non-communicable chronic disease prevalence. It is of public health policy interest to explore various ways to mitigate this occurrence including use of trypsin inhibitors. These inhibitors have capabilities of reducing colon, breast, skin, and prostate cancer by way of radioprotective and anticarcinogenic activity. Trypsin inhibitors can act as regulatory mechanisms to control release of neutrophil proteases and avoid significant tissue damage. In regards to cardiovascular conditions associated with unproductive serine protease activity, trypsin inhibitors can block their activity in platelet aggregation, fibrinolysis, coagulation, and blood coagulation.
The multifunctionality of trypsin inhibitors includes being potential protease inhibitors for AMP activity. While the antibacterial action mechanisms of trypsin inhibitors are unclear, studies have aimed to study their mechanisms as potential applications in bacterial infection treatments. Research and scanning microscopy showed antibacterial effects on bacterial membranes from Staphylococcus aureus. Trypsin inhibitors from amphibian skin showed bacterial death promotion that affected the cell wall and membrane of Staphylococcus aureus. Studies also analyzed antibacterial actions in trypsin inhibitor peptides, proteins, and Escherichia coli. The results showed sufficient bacterial growth prevention. However, trypsin inhibitors have to meet certain criteria to be utilized in foods and medical treatments.
ProAlanase could also serve as an alternative to Trypsin in proteomic applications. ProAlanase is an Aspergillus niger fungus protease that can achieve high proteolytic activity and specificity for digestion under the correct conditions. ProAnalase, the acidic prolyl-endopeptidase protease, previously studied as An-PEP, has been observed in various experiments to define its specificity. ProAnalase performed optimally in LC-MS applications with short digestion times and highly acidic pH.
|
|