A thermometer is a device that measures temperature (the hotness or coldness of an object) or temperature gradient (the rates of change of temperature in space). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer or the pyrometric sensor in an infrared thermometer) in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value (e.g. the visible scale that is marked on a mercury-in-glass thermometer or the digital readout on an infrared model). Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine ( medical thermometer), and in scientific research.
Translations of Philo's experiment from the original ancient Greek were utilized by Robert Fludd sometime around 1617 and used as the basis for his air thermometer.
Given this, Middleton claimed that the possible inventors of the thermometer are Galileo, Santorio, Dutch inventor Cornelis Drebbel, or British mathematician Robert Fludd. Though Galileo is often said to be the inventor of the thermometer, there is no surviving document that he actually produced any such instrument.
The first clear diagram of a thermoscope was published in 1617 by Giuseppe Biancani (1566 – 1624); the first showing a scale and thus constituting a thermometer was by Santorio Santorio in 1625. This was a vertical tube, closed by a bulb of air at the top, with the lower end opening into a vessel of water. The water level in the tube was controlled by the expansion and contraction of the air, so it was what we would now call an air thermometer.T.D. McGee (1988) Principles and Methods of Temperature Measurement, pages 2–4
The first physician to use thermometer measurements in clinical practice was Herman Boerhaave (1668–1738). In 1866, Sir Thomas Clifford Allbutt (1836–1925) invented a clinical thermometer that produced a body temperature reading in five minutes as opposed to twenty. Sir Thomas Clifford Allbutt, Encyclopædia Britannica In 1999, Dr. Francesco Pompei of the Exergen Corporation introduced the world's first temporal artery thermometer, a non-invasive temperature sensor which scans the forehead in about two seconds and provides a medically accurate body temperature. Exergen Corporation. Exergen.com. Retrieved on 2011-03-30. Patents By Inventor Francesco Pompei :: Justia Patents. Patents.justia.com. Retrieved on 2011-03-30.
Thermometers increasingly use electronic means to provide a digital display or input to a computer.
As it is customarily stated in textbooks, taken alone, the so-called "zeroth law of thermodynamics" fails to deliver this information, but the statement of the zeroth law of thermodynamics by James Serrin in 1977, though rather mathematically abstract, is more informative for thermometry: "Zeroth Law – There exists a topological line which serves as a coordinate manifold of material behaviour. The points of the manifold are called 'hotness levels', and is called the 'universal hotness manifold'."Serrin, J. (1978). The concepts of thermodynamics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August 1977, edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, , pages 411-451. To this information there needs to be added a sense of greater hotness; this sense can be had, independently of calorimetry, of thermodynamics, and of properties of particular materials, from Wien's displacement law of thermal radiation: the temperature of a bath of thermal radiation is proportional, by a universal constant, to the frequency of the maximum of its frequency spectrum; this frequency is always positive, but can have values that tend to zero. Another way of identifying hotter as opposed to colder conditions is supplied by Planck's principle, that when a process of isochoric adiabatic work is the sole means of change of internal energy of a closed system, the final state of the system is never colder than the initial state; except for phase changes with latent heat, it is hotter than the initial state.Max Planck (1926). Über die Begründung des zweiten Hauptsatzes der Thermodynamik, S.-B. Preuß. Akad. Wiss. phys. math. Kl.: 453–463.Buchdahl, H.A. (1966). The Concepts of Classical Thermodynamics, Cambridge University Press, London, pp. 42–43.
There are several principles on which empirical thermometers are built, as listed in the section of this article entitled "Primary and secondary thermometers". Several such principles are essentially based on the constitutive relation between the state of a suitably selected particular material and its temperature. Only some materials are suitable for this purpose, and they may be considered as "thermometric materials". Radiometric thermometry, in contrast, can be only slightly dependent on the constitutive relations of materials. In a sense then, radiometric thermometry might be thought of as "universal". This is because it rests mainly on a universality character of thermodynamic equilibrium, that it has the universal property of producing blackbody radiation.
Many empirical thermometers rely on the constitutive relation between pressure, volume and temperature of their thermometric material. For example, mercury expands when heated.
If it is used for its relation between pressure and volume and temperature, a thermometric material must have three properties:
(1) Its heating and cooling must be rapid. That is to say, when a quantity of heat enters or leaves a body of the material, the material must expand or contract to its final volume or reach its final pressure and must reach its final temperature with practically no delay; some of the heat that enters can be considered to change the volume of the body at constant temperature, and is called the Calorimetry; and the rest of it can be considered to change the temperature of the body at constant volume, and is called the Calorimetry. Some materials do not have this property, and take some time to distribute the heat between temperature and volume change.Truesdell, C., Bharatha, S. (1977). The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Rigorously Constructed upon the Foundation Laid by S. Carnot and F. Reech, Springer, New York, , page 20.
(2) Its heating and cooling must be reversible. That is to say, the material must be able to be heated and cooled indefinitely often by the same increment and decrement of heat, and still return to its original pressure, volume and temperature every time. Some plastics do not have this property;Ziegler, H., (1983). An Introduction to Thermomechanics, North-Holland, Amsterdam, .
(3) Its heating and cooling must be monotonic.Landsberg, P.T. (1961). Thermodynamics with Quantum Statistical Illustrations, Interscience Publishers, New York, page 17. That is to say, throughout the range of temperatures for which it is intended to work,
At temperatures around about 4 °C, water does not have the property (3), and is said to behave anomalously in this respect; thus water cannot be used as a material for this kind of thermometry for temperature ranges near 4 °C.Maxwell, J.C. (1872). Theory of Heat, third edition, Longmans, Green, and Co., London, pages 232-233.Lewis, G.N., Randall, M. (1923/1961). Thermodynamics, second edition revised by K.S Pitzer, L. Brewer, McGraw-Hill, New York, pages 378-379.Truesdell, C., Bharatha, S. (1977). The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. Rigorously Constructed upon the Foundation Laid by S. Carnot and F. Reech, Springer, New York, , pages 9-10, 15-18, 36-37.
Gases, on the other hand, all have the properties (1), (2), and (3)(a)(α) and (3)(b)(α). Consequently, they are suitable thermometric materials, and that is why they were important in the development of thermometry.Planck, M. (1897/1903). Treatise on Thermodynamics, translated by A. Ogg, Longmans, Green & Co., London.
In contrast, "Secondary thermometers are most widely used because of their convenience. Also, they are often much more sensitive than primary ones. For secondary thermometers knowledge of the measured property is not sufficient to allow direct calculation of temperature. They have to be calibrated against a primary thermometer at least at one temperature or at a number of fixed temperatures. Such fixed points, for example, and superconducting transitions, occur reproducibly at the same temperature."
The traditional way of putting a scale on a liquid-in-glass or liquid-in-metal thermometer was in three stages:
Other fixed points used in the past are the body temperature (of a healthy adult male) which was originally used by Fahrenheit as his upper fixed point ( to be a number divisible by 12) and the lowest temperature given by a mixture of salt and ice, which was originally the definition of .R.P. Benedict (1984) Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd ed, , page 5 (This is an example of a frigorific mixture.) As body temperature varies, the Fahrenheit scale was later changed to use an upper fixed point of boiling water at .J. Lord (1994) Sizes page 293
These have now been replaced by the defining points in the International Temperature Scale of 1990, though in practice the melting point of water is more commonly used than its triple point, the latter being more difficult to manage and thus restricted to critical standard measurement. Nowadays manufacturers will often use a thermostat bath or solid block where the temperature is held constant relative to a calibrated thermometer. Other thermometers to be calibrated are put into the same bath or block and allowed to come to equilibrium, then the scale marked, or any deviation from the instrument scale recorded.R.P. Benedict (1984) Fundamentals of Temperature, Pressure, and Flow Measurements, 3rd ed, , chapter 11 "Calibration of Temperature Sensors" For many modern devices calibration will be stating some value to be used in processing an electronic signal to convert it to a temperature.
A thermometer calibrated to a known fixed point is accurate (i.e. gives a true reading) at that point. The invention of the technology to measure temperature led to the creation of scales of temperature. In between fixed calibration points, interpolation is used, usually linear. This may give significant differences between different types of thermometer at points far away from the fixed points. For example, the expansion of mercury in a glass thermometer is slightly different from the change in resistance of a platinum resistance thermometer, so these two will disagree slightly at around 50 °C.T. Duncan (1973) Advanced Physics: Materials and Mechanics (John Murray, London) There may be other causes due to imperfections in the instrument, e.g. in a liquid-in-glass thermometer if the Capillary action varies in diameter.
For many purposes reproducibility is important. That is, does the same thermometer give the same reading for the same temperature (or do replacement or multiple thermometers give the same reading)? Reproducible temperature measurement means that comparisons are valid in scientific experiments and industrial processes are consistent. Thus if the same type of thermometer is calibrated in the same way its readings will be valid even if it is slightly inaccurate compared to the absolute scale.
An example of a reference thermometer used to check others to industrial standards would be a platinum resistance thermometer with a digital display to 0.1 °C (its precision) which has been calibrated at 5 points against national standards (−18, 0, 40, 70, 100 °C) and which is certified to an accuracy of ±0.2 °C. Peak Sensors Reference Thermometer
According to British Standards, correctly calibrated, used and maintained liquid-in-glass thermometers can achieve a measurement uncertainty of ±0.01 °C in the range 0 to 100 °C, and a larger uncertainty outside this range: ±0.05 °C up to 200 or down to −40 °C, ±0.2 °C up to 450 or down to −80 °C.BS1041-2.1:1985 Temperature Measurement- Part 2: Expansion thermometers. Section 2.1 Guide to selection and use of liquid-in-glass thermometers
Such liquid crystal thermometers (which use thermochromic liquid crystals) are also used in and used to measure the temperature of water in fish tanks.
Fiber Bragg grating temperature sensors are used in nuclear power facilities to monitor reactor core temperatures and avoid the possibility of .
Various thermometric techniques have been used throughout history such as the Galileo thermometer to thermal imaging.
Medical thermometers such as mercury-in-glass thermometers, infrared thermometers, , and liquid crystal thermometers are used in health care settings to determine if individuals have a fever or are hypothermia.
Indirect methods of temperature measurement
Applications
Nanothermometry
Cryometer
Medical
Food and food safety
Environmental
Alcohol thermometers, infrared thermometers, mercury-in-glass thermometers, recording thermometers, , and Six's thermometers (maximum-minimum thermometer) are used in meteorology and climatology in various levels of the atmosphere and oceans. Aircraft use thermometers and to determine if atmospheric icing conditions exist along their flight path. These measurements are used to initialize weather forecast models. Thermometers are used in roadways in cold weather climates to help determine if icing conditions exist and indoors in climate control systems.
See also
Further reading
External links
|
|