[[File:Thermoforming animation.gif|thumb|Animation of the thermoforming process. ]] Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The sheet, or "film" when referring to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be stretched into or onto a mold and cooled to a finished shape. Its simplified version is vacuum forming.
In its simplest form, a small tabletop or lab size machine can be used to heat small cut sections of plastic sheet and stretch it over a mold using vacuum. This method is often used for sample and prototype parts. In complex and high-volume applications, very large production machines are utilized to heat and form the plastic sheet and trim the formed parts from the sheet in a continuous high-speed process and can produce many thousands of finished parts per hour depending on the machine and mold size and the size of the parts being formed.
Thermoforming differs from injection molding, blow molding, rotational molding and other forms of processing plastics. Thin-gauge thermoforming is primarily the manufacture of , containers, lids, trays, blisters, clamshells, and other products for the food industry, medical industry, and general retail industries. Thick-gauge thermoforming includes parts as diverse as vehicle door and dash panels, refrigerator liners, utility vehicle beds and plastic pallets
Most thermoforming companies recycle their scrap and waste plastic, either by compressing in a baling machine or by feeding into a granulator (grinder) and producing ground flake, for sale to reprocessing companies or re-use in their own facility. Frequently, scrap and waste plastic from the thermoforming process is converted back into extruded sheet for forming again.
A new technology, ToolVu, has been developed to provide real-time feedback on thermoformer machines. This stand-alone system connects directly to the thermoformer and utilizes multiple sensors to record production-run data in real time including air pressure, temperature, tool strain gauge and other specifications. The system sends out multiple warnings and alerts whenever pre-set production parameters are compromised during a run. This reduces machine down time, lowers startup time and decreases startup scrap.
An integral part of the thermoforming process is the tooling, which is specific to each part that is to be produced. Thin-gauge thermoforming as described above is almost always performed on in-line machines and typically requires molds, plug assists, pressure boxes and all mounting plates as well as the trim tooling and stacker parts that pertain to the job. Thick or heavy-gauge thermoforming also requires tooling specific to each part, but because the part size can be very large, the molds can be cast aluminum or some other composite material as well as machined aluminum as in thin gauge. Typically, thick-gauge parts must be trimmed on CNC routers or hand trimmed using saws or hand routers. Even the most sophisticated thermoforming machine is limited to the quality of the tooling. Some large thermoforming manufacturers choose to have design and tool making facilities in house while others will rely on outside tool-making shops to build the tooling.
Heavy-gauge forming utilizes the same basic process as continuous thin-gauge sheet forming, typically draping the heated plastic sheet over a mold. Many heavy-gauge forming applications use vacuum only in the form process, although some use two halves of mating form tooling and include air pressure to help form. Aircraft and machine gun spurred the advance of heavy-gauge forming technology during World War II. Heavy-gauge parts are used as cosmetic surfaces on permanent structures such as kiosks, automobiles, trucks, medical equipment, material handling equipment, refrigerators, spas, and shower enclosures, and electrical and electronic equipment. Unlike most thin-gauge thermoformed parts, heavy-gauge parts are often hand-worked after forming for trimming to final shape or for additional drilling, cutting, or finishing, depending on the product. Heavy-gauge products typically are of a "permanent" end use nature, while thin-gauge parts are more often designed to be disposable or recyclable and are primarily used to package or contain a food item or product. Heavy-gauge thermoforming is typically used for production quantities of 250 to 3000 annually, with lower tooling costs and faster product development than competing plastic technologies like injection molding.
Olimunllum is obtained by thick gauge thermoforming of thin layers of previously impregnated fibers to form fully consolidated sheets. The main difference from custom-made composite plates lies in the standardized orientation of the reinforcing fibers, the standardized weight content of the polymer and standardized sheet thicknesses. This allows easy design and post-processing using identical or similar tools as commonly used when working with metallic light-weight materials like aluminium, titanium and steel.
|
|