A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is the portion with which other materials first interact. The surface of an object is more than "a mere geometric solid", but is "filled with, spread over by, or suffused with perceivable qualities such as color and warmth".
The concept of surface has been abstracted and formalized in mathematics, specifically in geometry. Depending on the properties on which the emphasis is given, there are several inequivalent such formalizations that are all called surface, sometimes with a qualifier such as algebraic surface, smooth surface or fractal surface.
The concept of surface and its mathematical abstractions are both widely used in physics, engineering, computer graphics, and many other disciplines, primarily in representing the surfaces of physical objects. For example, in analyzing the aerodynamics properties of an airplane, the central consideration is the flow of air along its surface. The concept also raises certain philosophical questions—for example, how thick is the layer of atoms or molecules that can be considered part of the surface of an object (i.e., where does the "surface" end and the "interior" begin), and do objects really have a surface at all if, at the subatomic level, they never actually come in contact with other objects.
Synchrotron x-ray and neutron scattering measurements are used to provide experimental data on the structure and motion of molecular adsorbates adsorbed on surfaces. The aim of such methods is to provide the data needed to benchmark the latest developments in the modelling of surface systems, their electronic and physical structures and the energetics and friction associated with surface motion.
Current projects focus on the surface adsorption of polyaromatic hydrocarbons (PAHs), a class of molecules key to the refinement of the modelling of dispersive forces through approaches such as density functional theory, and build on our complementary work applying helium atom scattering and scanning tunnelling microscopy to small molecules with aromatic functionality.
Many surfaces considered in physics and chemistry (physical sciences in general) are interfaces. For example, a surface may be the idealized limit between two , liquid and gas (the surface of the sea in air) or the idealized boundary of a solid (the surface of a ball). In fluid dynamics, the shape of a free surface may be defined by surface tension. However, they are surfaces only at macroscopic scale. At microscopic scale, they may have some thickness. At atomic scale, they do not look at all as a surface, because of holes formed by spaces between or .
Other surfaces considered in physics are . One of these, discovered by Fresnel, is called wave surface by mathematicians.
The surface of the reflector of a telescope is a paraboloid of revolution.
Other occurrences:
Surfaces can be categorized based on how they are defined or represented:
One of the main challenges in computer graphics is creating realistic simulations of surfaces. In technical applications of 3D computer graphics (CAx) such as computer-aided design and computer-aided manufacturing, surfaces are one way of representing objects. The other ways are wireframe (lines and curves) and solids. Point clouds are also sometimes used as temporary ways to represent an object, with the goal of using the points to create one or more of the three permanent representations.
One technique used for enhancing surface realism in computer graphics is the use of physically-based rendering (PBR) algorithms which simulate the interaction of light with surfaces based on their physical properties, such as reflectance, roughness, and transparency. By incorporating mathematical models and algorithms, PBR can generate highly realistic renderings that resemble the behavior of real-world materials. PBR has found practical applications beyond entertainment, extending its impact to architectural design, product Prototype, and scientific simulations.
|
|