A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2022, supercomputers have existed which can perform over 1018 FLOPS, so called exascale supercomputers. For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers.Anderson, Mark (21 June 2017). "Global Race Toward Exascale Will Drive Supercomputing, AI to Masses." Spectrum.IEEE.org. Retrieved 20 January 2019.
Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in various fields, including quantum mechanics, weather forecasting, climate research, oil and gas exploration, molecular modeling (computing the structures and properties of chemical compounds, biological macromolecules, polymers, and crystals), and physical simulations (such as simulations of the early moments of the universe, airplane and spacecraft aerodynamics, the detonation of nuclear weapons, and nuclear fusion). They have been essential in the field of cryptanalysis.
Supercomputers were introduced in the 1960s, and for several decades the fastest was made by Seymour Cray at Control Data Corporation (CDC), Cray Research and subsequent companies bearing his name or monogram. The first such machines were highly tuned conventional designs that ran more quickly than their more general-purpose contemporaries. Through the decade, increasing amounts of parallelism were added, with one to four processors being typical. In the 1970s, operating on large arrays of data came to dominate. A notable example is the highly successful Cray-1 of 1976. Vector computers remained the dominant design into the 1990s. From then until today, massively parallel supercomputers with tens of thousands of off-the-shelf processors became the norm.
The US has long been the leader in the supercomputer field, first through Cray's almost uninterrupted dominance of the field, and later through a variety of technology companies. Japan made major strides in the field in the 1980s and 1990s, with China becoming increasingly active in the field. , Lawrence Livermore National Laboratory's El Capitan is the world's fastest supercomputer. The US has five of the top 10; Italy two, Japan, Finland, Switzerland have one each. In June 2018, all combined supercomputers on the TOP500 list broke the 1 exaFLOPS mark.
The third pioneering supercomputer project in the early 1960s was the Atlas at the University of Manchester, built by a team led by Tom Kilburn. He designed the Atlas to have memory space for up to a million words of 48 bits, but because magnetic storage with such a capacity was unaffordable, the actual core memory of the Atlas was only 16,000 words, with a drum providing memory for a further 96,000 words. The Atlas Supervisor swapped data in the form of pages between the magnetic core and the drum. The Atlas operating system also introduced time-sharing to supercomputing, so that more than one program could be executed on the supercomputer at any one time.
The CDC 6600, designed by Seymour Cray, was finished in 1964 and marked the transition from germanium to silicon transistors. Silicon transistors could run more quickly and the overheating problem was solved by introducing refrigeration to the supercomputer design. The Supermen, Charles Murray, Wiley & Sons, 1997. Thus, the CDC6600 became the fastest computer in the world. Given that the 6600 outperformed all the other contemporary computers by about 10 times, it was dubbed a supercomputer and defined the supercomputing market, when one hundred computers were sold at $8 million each.
Cray left CDC in 1972 to form his own company, Cray. Four years after leaving CDC, Cray delivered the 80 MHz Cray-1 in 1976, which became one of the most successful supercomputers in history. Readings in computer architecture by Mark Donald Hill, Norman Paul Jouppi, Gurindar Sohi 1999 page 41-48 Milestones in computer science and information technology by Edwin D. Reilly 2003 page 65 The Cray-2 was released in 1985. It had eight central processing units (CPUs), Computer cooling and the electronics coolant liquid Fluorinert was pumped through the supercomputer architecture. It reached 1.9 gigaFLOPS, making it the first supercomputer to break the gigaflop barrier.Due to Soviet propaganda, it can be read sometimes that the Soviet supercomputer M13 was the first to reach the gigaflops barrier. Actually, the M13 building began in 1984, but it was not operational before 1986. Rogachev Yury Vasilievich, Russian Virtual Computer Museum
But the partial success of the ILLIAC IV was widely seen as pointing the way to the future of supercomputing. Cray argued against this, famously quipping that "If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?" But by the early 1980s, several teams were working on parallel designs with thousands of processors, notably the Connection Machine (CM) that developed from research at MIT. The CM-1 used as many as 65,536 simplified custom connected together in a computer network to share data. Several updated versions followed; the CM-5 supercomputer is a massively parallel processing computer capable of many billions of arithmetic operations per second.
In 1982, Osaka University's LINKS-1 Computer Graphics System used a massively parallel processing architecture, with 514 , including 257 Zilog Z8001 control processors and 257 iAPX 86/20 floating-point processors. It was mainly used for rendering realistic 3D computer graphics. Fujitsu's VPP500 from 1992 is unusual since, to achieve higher speeds, its processors used GaAs, a material normally reserved for microwave applications due to its toxicity. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 FLOPS per processor. The Hitachi SR2201 obtained a peak performance of 600 GFLOPS in 1996 by using 2048 processors connected via a fast three-dimensional crossbar switch network.H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara, M. Syazwan, H. Wada, T. Sumimoto, Architecture and performance of the Hitachi SR2201 massively parallel processor system, Proceedings of 11th International Parallel Processing Symposium, April 1997, pages 233–241.Y. Iwasaki, The CP-PACS project, Nuclear Physics B: Proceedings Supplements, Volume 60, Issues 1–2, January 1998, pages 246–254.A.J. van der Steen, Overview of recent supercomputers, Publication of the NCF, Stichting Nationale Computer Faciliteiten, the Netherlands, January 1997. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two-dimensional mesh, allowing processes to execute on separate nodes, communicating via the Message Passing Interface. Scalable input/output: achieving system balance by Daniel A. Reed 2003 page 182
Software development remained a problem, but the CM series sparked off considerable research into this issue. Similar designs using custom hardware were made by many companies, including the Evans & Sutherland ES-1, MasPar, nCUBE, Intel iPSC and the Goodyear MPP. But by the mid-1990s, general-purpose CPU performance had improved so much in that a supercomputer could be built using them as the individual processing units, instead of using custom chips. By the turn of the 21st century, designs featuring tens of thousands of commodity CPUs were the norm, with later machines adding GPGPU to the mix.
In 1998, David Bader developed the first Linux supercomputer using commodity parts. While at the University of New Mexico, Bader sought to build a supercomputer running Linux using consumer off-the-shelf parts and a high-speed low-latency interconnection network. The prototype utilized an Alta Technologies "AltaCluster" of eight dual, 333 MHz, Intel Pentium II computers running a modified Linux kernel. Bader ported a significant amount of software to provide Linux support for necessary components as well as code from members of the National Computational Science Alliance (NCSA) to ensure interoperability, as none of it had been run on Linux previously. Using the successful prototype design, he led the development of "RoadRunner," the first Linux supercomputer for open use by the national science and engineering community via the National Science Foundation's National Technology Grid. RoadRunner was put into production use in April 1999. At the time of its deployment, it was considered one of the 100 fastest supercomputers in the world. Though Linux-based clusters using consumer-grade parts, such as Beowulf cluster, existed prior to the development of Bader's prototype and RoadRunner, they lacked the scalability, bandwidth, and parallel computing capabilities to be considered "true" supercomputers.
Systems with a massive number of processors generally take one of two paths. In the grid computing approach, the processing power of many computers, organized as distributed, diverse administrative domains, is opportunistically used whenever a computer is available. In another approach, many processors are used in proximity to each other, e.g. in a computer cluster. In such a centralized massively parallel system the speed and flexibility of the becomes very important and modern supercomputers have used various approaches ranging from enhanced Infiniband systems to three-dimensional torus interconnects.Knight, Will: " IBM creates world's most powerful computer", NewScientist.com news service, June 2007 The use of multi-core processors combined with centralization is an emerging direction, e.g. as in the Cyclops64 system.
As the price, performance and energy efficiency of GPGPU (GPGPUs) have improved, a number of petaFLOPS supercomputers such as Tianhe-I and Nebulae have started to rely on them. However, other systems such as the K computer continue to use conventional processors such as SPARC-based designs and the overall applicability of in general-purpose high-performance computing applications has been the subject of debate, in that while a GPGPU may be tuned to score well on specific benchmarks, its overall applicability to everyday algorithms may be limited unless significant effort is spent to tune the application to it.
High-performance computers have an expected life cycle of about three years before requiring an upgrade. "The NETL SuperComputer" .
page 2. The Gyoukou supercomputer is unique in that it uses both a massively parallel design and liquid immersion cooling.
Heat management is a major issue in complex electronic devices and affects powerful computer systems in various ways. The thermal design power and CPU power dissipation issues in supercomputing surpass those of traditional computer cooling technologies. The supercomputing awards for green computing reflect this issue.
The packing of thousands of processors together inevitably generates significant amounts of heat density that need to be dealt with. The Cray-2 was Computer cooling, and used a Fluorinert "cooling waterfall" which was forced through the modules under pressure. However, the submerged liquid cooling approach was not practical for the multi-cabinet systems based on off-the-shelf processors, and in System X a special cooling system that combined air conditioning with liquid cooling was developed in conjunction with the Liebert company. Computational science – ICCS 2005: 5th international conference edited by Vaidy S. Sunderam 2005, , pages 60–67
In the Blue Gene system, IBM deliberately used low power processors to deal with heat density. The IBM Power 775, released in 2011, has closely packed elements that require water cooling. The IBM Aquasar system uses hot water cooling to achieve energy efficiency, the water being used to heat buildings as well.
The energy efficiency of computer systems is generally measured in terms of "FLOPS per watt". In 2008, Roadrunner by IBM operated at 376 MFLOPS/W. In November 2010, the Blue Gene/Q reached 1,684 MFLOPS/W and in June 2011 the top two spots on the Green 500 list were occupied by Blue Gene machines in New York (one achieving 2097 MFLOPS/W) with the DEGIMA cluster in Nagasaki placing third with 1375 MFLOPS/W.
Because copper wires can transfer energy into a supercomputer with much higher power densities than forced air or circulating refrigerants can remove waste heat,
Saed G. Younis.
"Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic".
1994.
page 14.
the ability of the cooling systems to remove waste heat is a limiting factor.
"Hot Topic – the Problem of Cooling Supercomputers" .
Anand Lal Shimpi.
"Inside the Titan Supercomputer: 299K AMD x86 Cores and 18.6K NVIDIA GPUs".
2012.
, many existing supercomputers have more infrastructure capacity than the actual peak demand of the machine designers generally conservatively design the power and cooling infrastructure to handle more than the theoretical peak electrical power consumed by the supercomputer. Designs for future supercomputers are power-limited the thermal design power of the supercomputer as a whole, the amount that the power and cooling infrastructure can handle, is somewhat more than the expected normal power consumption, but less than the theoretical peak power consumption of the electronic hardware.
Curtis Storlie; Joe Sexton; Scott Pakin; Michael Lang; Brian Reich; William Rust.
"Modeling and Predicting Power Consumption of High-Performance Computing Jobs".
2014.
Since modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a full Linux distribution on server and I/O nodes. Euro-Par 2004 Parallel Processing: 10th International Euro-Par Conference 2004, by Marco Danelutto, Marco Vanneschi and Domenico Laforenza, , page 835 Euro-Par 2006 Parallel Processing: 12th International Euro-Par Conference, 2006, by Wolfgang E. Nagel, Wolfgang V. Walter and Wolfgang Lehner page''
While in a traditional multi-user computer system job scheduling is, in effect, a task scheduling problem for processing and peripheral resources, in a massively parallel system, the job management system needs to manage the allocation of both computational and communication resources, as well as gracefully deal with inevitable hardware failures when tens of thousands of processors are present.Open Job Management Architecture for the Blue Gene/L Supercomputer by Yariv Aridor et al. in Job scheduling strategies for parallel processing by Dror G. Feitelson 2005 pages 95–101
Although most modern supercomputers use Linux-based operating systems, each manufacturer has its own specific Linux distribution, and no industry standard exists, partly due to the fact that the differences in hardware architectures require changes to optimize the operating system to each hardware design.
In the most common scenario, environments such as PVM and MPI for loosely connected clusters and OpenMP for tightly coordinated shared memory machines are used. Significant effort is required to optimize an algorithm for the interconnect characteristics of the machine it will be run on; the aim is to prevent any of the CPUs from wasting time waiting on data from other nodes. have hundreds of processor cores and are programmed using programming models such as CUDA or OpenCL.
Moreover, it is quite difficult to debug and test parallel programs. Special techniques need to be used for testing and debugging such applications.
The fastest grid computing system is the volunteer computing project Folding@home (F@h). , F@h reported 2.5 exaFLOPS of x86 processing power. Of this, over 100 PFLOPS are contributed by clients running on various GPUs, and the rest from various CPU systems.
The Berkeley Open Infrastructure for Network Computing (BOINC) platform hosts a number of volunteer computing projects. , BOINC recorded a processing power of over 166 petaFLOPS through over 762 thousand active Computers (Hosts) on the network.
, Great Internet Mersenne Prime Search's (GIMPS) distributed Mersenne Prime search achieved about 0.313 PFLOPS through over 1.3 million computers. The PrimeNet server has supported GIMPS's grid computing approach, one of the earliest volunteer computing projects, since 1997.
In 2016, Penguin Computing, Parallel Works, R-HPC, Amazon Web Services, Univa, Silicon Graphics International, Rescale, Sabalcore, and Gomput started to offer HPC cloud computing. The Penguin On Demand (POD) cloud is a Bare metal compute model to execute code, but each user is given virtualized login node. POD computing nodes are connected via non-virtualized 10 Gbit/s Ethernet or QDR InfiniBand networks. User connectivity to the POD data center ranges from 50 Mbit/s to 1 Gbit/s. Citing Amazon's EC2 Elastic Compute Cloud, Penguin Computing argues that virtualization of compute nodes is not suitable for HPC. Penguin Computing has also criticized that HPC clouds may have allocated computing nodes to customers that are far apart, causing latency that impairs performance for some HPC applications.
Capacity computing, in contrast, is typically thought of as using efficient cost-effective computing power to solve a few somewhat large problems or many small problems. The Potential Impact of High-End Capability Computing on Four Illustrative Fields of Science and Engineering by Committee on the Potential Impact of High-End Computing on Illustrative Fields of Science and Engineering and National Research Council (28 October 2008) page 9 Architectures that lend themselves to supporting many users for routine everyday tasks may have a lot of capacity but are not typically considered supercomputers, given that they do not solve a single very complex problem.
No single number can reflect the overall performance of a computer system, yet the goal of the Linpack benchmark is to approximate how fast the computer solves numerical problems and it is widely used in the industry. The FLOPS measurement is either quoted based on the theoretical floating point performance of a processor (derived from manufacturer's processor specifications and shown as "Rpeak" in the TOP500 lists), which is generally unachievable when running real workloads, or the achievable throughput, derived from the LINPACK benchmarks and shown as "Rmax" in the TOP500 list. The LINPACK benchmark typically performs LU decomposition of a large matrix. The LINPACK performance gives some indication of performance for some real-world problems, but does not necessarily match the processing requirements of many other supercomputer workloads, which for example may require more memory bandwidth, or may require better integer computing performance, or may need a high performance I/O system to achieve high levels of performance.
This is a list of the computers which appeared at the top of the TOP500 list since June 1993, and the "Peak speed" is given as the "Rmax" rating. In 2018, Lenovo became the world's largest provider for the TOP500 supercomputers with 117 units produced.
The IBM Blue Gene/P computer has been used to simulate a number of artificial neurons equivalent to approximately one percent of a human cerebral cortex, containing 1.6 billion neurons with approximately 9 trillion connections. The same research group also succeeded in using a supercomputer to simulate a number of artificial neurons equivalent to the entirety of a rat's brain.Kaku, Michio. Physics of the Future (New York: Doubleday, 2011), 65.
Modern weather forecasting relies on supercomputers. The National Oceanic and Atmospheric Administration uses supercomputers to crunch hundreds of millions of observations to help make weather forecasts more accurate.
In 2011, the challenges and difficulties in pushing the envelope in supercomputing were underscored by IBM's abandonment of the Blue Waters petascale project.
The Advanced Simulation and Computing Program currently uses supercomputers to maintain and simulate the United States nuclear stockpile.
In early 2020, COVID-19 was front and center in the world. Supercomputers used different simulations to find compounds that could potentially stop the spread. These computers run for tens of hours using multiple paralleled running CPU's to model different processes.
Many Monte Carlo simulations use the same algorithm to process a randomly generated data set; particularly, integro-differential equations describing physical transport processes, the Random walk, collisions, and energy and momentum depositions of neutrons, photons, ions, electrons, etc. The next step for microprocessors may be into the third dimension; and specializing to Monte Carlo, the many layers could be identical, simplifying the design and manufacture process.
The cost of operating high performance supercomputers has risen, mainly due to increasing power consumption. In the mid-1990s a top 10 supercomputer required in the range of 100 kilowatts, in 2010 the top 10 supercomputers required between 1 and 2 megawatts.
The increasing cost of operating supercomputers has been a driving factor in a trend toward bundling of resources through a distributed supercomputer infrastructure. National supercomputing centers first emerged in the US, followed by Germany and Japan. The European Union launched the Partnership for Advanced Computing in Europe (PRACE) with the aim of creating a persistent pan-European supercomputer infrastructure with services to support scientists across the European Union in porting, scaling and optimizing supercomputing applications. Iceland built the world's first zero-emission supercomputer. Located at the Thor Data Center in Reykjavík, Iceland, this supercomputer relies on completely renewable sources for its power rather than fossil fuels. The colder climate also reduces the need for active cooling, making it one of the greenest facilities in the world of computers.
Funding supercomputer hardware also became increasingly difficult. In the mid-1990s a top 10 supercomputer cost about 10 million euros, while in 2010 the top 10 supercomputers required an investment of between 40 and 50 million euros. In the 2000s national governments put in place different strategies to fund supercomputers. In the UK the national government funded supercomputers entirely and high performance computing was put under the control of a national funding agency. Germany developed a mixed funding model, pooling local state funding and federal funding.
Special purpose supercomputers
Energy usage and heat management
Software and system management
Operating systems
target="_blank" rel="nofollow"> An Evaluation of the Oak Ridge National Laboratory Cray XT3 by Sadaf R. Alam etal International Journal of High Performance Computing Applications'' February 2008 vol. 22 no. 1 52–80
Software tools and message passing
Distributed supercomputing
Opportunistic approaches
Quasi-opportunistic approaches
High-performance computing clouds
Performance measurement
Capability versus capacity
Performance metrics
The TOP500 list
Legend:
+Top 10 positions of the 64th TOP500 in November 2024
Applications
1970s Weather forecasting, aerodynamic research (Cray-1) 1980s Probabilistic analysis, radiation shielding modeling (CDC Cyber) 1990s Brute-force code breaking (EFF DES cracker) 2000s 3D nuclear test simulations as a substitute for legal conduct Nuclear Non-Proliferation Treaty (ASCI Q) 2010s Molecular dynamics simulation (Tianhe-1A) 2020s Scientific research for outbreak prevention/electrochemical reaction research
Development and trends
In fiction
See also
External links
|
|