Streamlines, streaklines and pathlines are in a fluid flow. They differ only when the flow changes with time, that is, when the flow is not steady flow. Considering a velocity vector field in three-dimensional space in the framework of continuum mechanics:
By definition, different streamlines at the same instant in a flow do not intersect, because a fluid particle cannot have two different velocities at the same point. Pathlines are allowed to intersect themselves or other pathlines (except the starting and end points of the different pathlines, which need to be distinct). Streaklines can also intersect themselves and other streaklines.
Streamlines provide a snapshot of some flowfield characteristics, whereas streaklines and pathlines depend on the -history of the flow. Often, sequences of streamlines or streaklines at different instants, presented either in a single image or with a videostream, may provide insight to the flow and its history.
If a line, curve or closed curve is used as start point for a continuous set of streamlines, the result is a stream surface. In the case of a closed curve in a steady flow, fluid that is inside a stream surface must remain forever within that same stream surface, because the streamlines are tangent to the flow velocity. A scalar function whose define the streamlines is known as the stream function.
If the components of the velocity are written and those of the streamline as then
which shows that the curves are parallel to the velocity vector. Here is a variable which parametrizes the curve Streamlines are calculated instantaneously, meaning that at one instance of time they are calculated throughout the fluid from the instantaneous flow velocity field.
A streamtube consists of a bundle of streamlines, much like communication cable.
The equation of motion of a fluid on a streamline for a flow in a vertical plane is:
The flow velocity in the direction of the streamline is denoted by . is the radius of curvature of the streamline. The density of the fluid is denoted by and the kinematic viscosity by . is the pressure gradient and the velocity gradient along the streamline. For a steady flow, the time derivative of the velocity is zero: . denotes the gravitational acceleration.
The subscript indicates a following of the motion of a fluid particle.
Note that at point the curve is parallel to the flow velocity vector , where the velocity vector is evaluated at the position of the particle at that time .
This is useful, because it is usually very difficult to look at streamlines in an experiment. If the flow is steady, one can use streaklines to describe the streamline pattern.
Dye can be used in water, or smoke in air, in order to see streaklines, from which pathlines can be calculated. Streaklines are identical to streamlines for steady flow. Further, dye can be used to create timelines. The patterns guide design modifications, aiming to reduce the drag. This task is known as streamlining, and the resulting design is referred to as being streamlined. Streamlined objects and organisms, like , , automobile and are often aesthetically pleasing to the eye. The Streamline Moderne style, a 1930s and 1940s offshoot of Art Deco, brought flowing lines to architecture and design of the era. The canonical example of a streamlined shape is a chicken egg with the blunt end facing forwards. This shows clearly that the curvature of the front surface can be much steeper than the back of the object. Most drag is caused by eddies in the fluid behind the moving object, and the objective should be to allow the fluid to slow down after passing around the object, and regain pressure, without forming eddies.
The same terms have since become common vernacular to describe any process that smooths an operation. For instance, it is common to hear references to streamlining a business practice, or operation.
Pathlines
Streaklines
Steady flows
Frame dependence
Application
See also
Notes and references
Notes
External links
|
|