Product Code Database
Example Keywords: medical -soulcalibur $44
   » » Wiki: Samandarin
Tag Wiki 'Samandarin'.
Tag

Samandarin or Samandarine is the main secreted by the ( Salamandra salamandra). The compound is extremely toxic (LD50 = 70 μg/kg in mice). Poisoning can cause , respiratory paralysis, and eventual death. Samandarin is also believed to be the active ingredient in Salamander brandy, a Slovenian traditional medicinal alcoholic drink with purported and effects.


Samandarine family
Samandarin belongs to a family of toxic compounds called samandarines. Samandarines are biologically active, lipid-soluble steroidal alkaloids. They all contain a similar 7-6-6-5 fused ring system. Nine structures in this family have been characterized.

Samandarines are exclusively produced and secreted by the fire salamander through their (20 mg/gland). Samandarin is the main component of these glandular secretions, although the precise ratio of the alkaloids can vary from species to species and individual to individual.

Fire salamanders are indigenous to and reside in forests. Salamander secretions have been shown to be toxic and distasteful to , , , and even other . It has also been suggested that this alkaloid helps to prevent the salamander from contracting bacterial and fungal infections.


History

Discovery
Early descriptions of salamander poisonings were found in the writings of many physicians and philosophers in Classical antiquity and the . Little was known about the toxic compounds, but the recorded symptoms from poisonings were consistent with what is known today. The ancient healers also had some interesting theories about how one contracted poison from the salamander. They believed that the mere sighting of the black and yellow spotted animal or ingestion of salamander ashes would lead to sickness and death.

It was not until 1768 when Laurentius, a physician, discovered that the from the skin glands of the salamander were the source of the poison. In 1866, Zalesky performed more studies on the of samandarines. He was able to isolate the family of alkaloids (believing they were one compound) and tested their toxicity on a variety of animals. He also found that the salamander could be poisoned by its own venom if it entered the salamander's bloodstream.

Samandarin was the first in the family of compounds to be isolated. In 1899, Faust purified samandarin as a salt by killing the salamanders with , mincing their corpses, and performing a number of acid-base extractions. In 1926, the of samandarin was further examined by Gessner who administered the poison to animals and their corpses. He determined that the poison primarily affected the central nervous system and .

Most studies on samandarin and other samandarine alkaloids were performed in the mid-1900s by German scientists Schöpf and Habermehl. They were able to elucidate the structures of nine samandarines and found that samandarin was the main alkaloid in the salamander's secretions. The structure and of samandarin was confirmed in 1961 using X-ray crystallography. In 1968, Habermehl and Haaf also investigated of samandarines with and experiments, finding that the compounds originate from a precursor.


Use in Salamander Brandy
It is believed that the samandarine family of compounds is the active ingredient in an indigenous drink called Salamander brandy. Salamander brandy was first brought to attention in 1995 by an article published in the Slovenian magazine , describing the hallucinogenic and intensely aphrodisiac effects of the drink.
(2025). 9781441912220, Springer. .

Ogorevc, the author of the article, writes about his first-hand experience of obtaining and experimenting with Salamander brandy. In the excerpt below, Ogorevc describes his intoxication with Salamander brandy:

Ogorevc also reported on a few methods he observed for making Salamander brandy. One is by adding live black and yellow spotted salamanders to a barrel of fruit (one salamander for every ten liters). The mixture is then left for a couple of months while the salamander secretes its toxins (supposedly samandarines) to avoid absorption until its eventual death. Another method he describes is to hang a salamander by its hind legs under a stream of during the distillation process. The salamander will excrete its poisons to defend itself while the brandy continues to wash away its secretions. A third technique is to kill and dry the salamanders and hang them above the pot of cooking fruit. The steam that rises will extract the poisonous compounds from the salamander and will then be distilled and collected in a vessel.

The publication of Ogorevc's account brought much public attention and curiosity to this enigmatic drink. Yet, the credibility of the existence of Salamander brandy as described by Ogorevc has been brought into question. Miha Kozorog from University of Ljubljana decided to investigate Ogorevc's claims in 2003. Although he and his colleagues traveled to the region where Ogorevc supposedly bought Salamander brandy, Kozorog was unable to obtain any samples.

However, from many discussions with the locals in that region, he learned that Salamander brandy was not a drink as exclaimed by Ogorevc and the media but was rather a derogatory term for bad or fake brandy. The locals explain that brandy distillers who make Salamander brandy are swindlers. Those who do consume Salamander brandy, only do so accidentally and as a result, will experience in the legs (which is one of the symptoms of samandarin poisoning). Kozorog quotes “there are fair and good brandy distillers who cook pure and good brandy; there are also those who swindle with brandy and whose brandy is a fake one (and sometimes poisoned)…”

Kozorog also learned of a surrounding Salamander brandy. The story tells a tale of a woman who lived on a farm and often cooked a special brandy to which she added a live salamander. Those who drank her brandy were driven mad from the poison. Whenever the came by for a drink, the locals could hear terrible rumbling throughout their village as the devil ran around intoxicated from her concoction.

In his research, Kozorog was unable to find any hard evidence of the hallucinogenic properties Ogorevc described in Salamander brandy. Considering the methods that have been described for preparing Salamander brandy, it is likely that samandarine toxins do play a role in the effects of the drink. However, the brandy is rather stigmatized among locals as brandy. Kozorog claims that the excitement surrounding the psychedelic properties of Salamander brandy was engendered mainly by Ogorevc's humorous writing style and grandiose media coverage.


Biological effects
Samandarin is extremely toxic (LD50 = 70 μg/kg in mice, LD50 = 700-900 μg/kg in dogs) but little is known about its precise mechanism of action. Samandarin mainly affects the central nervous system, specifically neurons in the . No or is known for the poison. Although samandarin is thought to have some local anesthetic effects, there are currently no therapeutic uses for samandarin.

Samandarin poisoning can occur through exposure or oral ingestion. In the early stages of samandarin poisoning, there is over-excitation of the – restlessness, , , , and increased and . In the later stages, samandarin can cause , , and . Death eventually occurs by respiratory paralysis after a few hours. Animals poisoned with samandarin show in the internal organs.

The and effects of this molecule class have been mentioned in and reported by media but are largely unfounded.


Synthesis

By the salamander
Habermehl and Haaf have investigated the of samandarin with in vivo and in vitro experiments. Samandarin is synthesized from in the , , or . They found that the enlargement of ring A occurs by nitrogen insertion from a residue. The degradation of the carbon chain and hydroxylation of ring D is shown through the intermediates in the scheme below.

The carbon chain on the D ring of cholesterol is degraded by functionalizations with carboxyl groups and sequential . A hydroxyl group is also installed on the adjacent carbon to yield samandarin. These steps are performed by in the salamander. The details of the biosynthesis have not been elucidated completely.


In the lab
The chemical synthesis of samandarin was of interest by a few groups in the 1960s and 1970s but has not been pursued in recent years. The construction of ring A was of greatest synthetic interest. Shimizu in 1976 was able to successfully construct the bridged oxazolidone system with correct stereoselectivity. The steps proceeded with low to moderate yields.

The last few steps of the synthesis is shown below. Using , an epoxide is created onto the alkene. The addition of will facilitate the anti-Markovnikov opening of the epoxide. Reduction with sodium borohydride completes the azaheterocycle and bridged oxazolidone through either a cyclic amidine intermediate or imino ester intermediate.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time