Salamanders are a group of typically characterized by their lizard-like appearance, with slender bodies, blunt snouts, short limbs projecting at right angles to the body, and the presence of a tail in both larvae and adults. All ten extant salamander families are grouped together under the order Urodela, the sole surviving order from the group Caudata. Urodela is a scientific Latin term based on the Ancient Greek οὐρά δήλη: ourà dēlē "conspicuous tail". Caudata is the Latin for "tailed ones", from cauda: "tail".
Salamander diversity is highest in eastern North America, especially in the Appalachian Mountains; most species are found in the Holarctic realm, with some species present in the Neotropical realm. Salamanders never have more than four toes on their front legs and five on their rear legs, Life Traces of the Georgia Coast: Revealing the Unseen Lives of Plants and Animals but some species have fewer digits and others lack hind limbs. Their permeable skin usually makes them reliant on habitats in or near water or other cool, damp places. Some salamander species are fully aquatic throughout their lives, some take to the water intermittently, and others are entirely terrestrial as adults.
This group of amphibians is capable of regenerating lost limbs as well as other damaged parts of their bodies. Researchers hope to reverse engineer the regenerative processes for potential human medical applications, such as brain and spinal cord injury treatment or preventing harmful scarring during heart surgery recovery. The remarkable ability of salamanders to regenerate is not just limited to limbs but extends to vital organs such as the heart, jaw, and parts of the spinal cord, showing their uniqueness compared to different types of vertebrates. This ability is most remarkable for occurring without any type of scarring. This has made salamanders an invaluable model organism in scientific research aimed at understanding and achieving regenerative processes for medical advancements in human and animal biology.
Members of the family Salamandridae are mostly known as and lack the along the sides of their bodies typical of other groups. The skin of some species contains the powerful poison tetrodotoxin; these salamanders tend to be slow-moving and have bright warning coloration to advertise their toxicity. Salamanders typically lay eggs in water and have aquatic larvae, but great variation occurs in their lifecycles. Some species in harsh environments reproduce while still in the larval state.
Salamanders range in size from the minute salamanders, with a total length of , including the tail, to the Chinese giant salamander which reaches and weighs up to . All the largest species are found in the four families , Sirenidae, Amphiuma and Proteidae, who are all aquatic and obligate paedomorphs. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development Metabolism, gas exchange, and acid-base balance of giant salamanders Some of the largest terrestrial salamanders, which goes through full metamorphosis, belongs to the family of Pacific giant salamanders, and are much smaller. Field Guide to Amphibians and Reptiles of California: Revised Edition Most salamanders are between in length.Stebbins & Cohen (1995) p. 3
Some aquatic species, such as Sirenidae and , have reduced or absent hind limbs, giving them an eel-like appearance, but in most species, the front and rear limbs are about the same length and project sideward, barely raising the trunk off the ground. The feet are broad with short digits, usually four on the front feet and five on the rear. Salamanders do not have claws, and the shape of the foot varies according to the animal's habitat. Climbing species have elongated, square-tipped toes, while rock-dwellers have larger feet with short, blunt toes. The Bolitoglossa ( Bolitoglossa sp.) has plate-like webbed feet which adhere to smooth surfaces by suction, while the rock-climbing Hydromantes species from California have feet with fleshy webs and short digits and use their tails as an extra limb. When ascending, the tail props up the rear of the body, while one hind foot moves forward and then swings to the other side to provide support as the other hind foot advances.Stebbins & Cohen (1995) pp. 26–30
In larvae and aquatic salamanders, the tail is laterally flattened, has dorsal and ventral fins, and undulates from side to side to propel the animal through the water. In the families Ambystomatidae and Salamandridae, the male's tail, which is larger than that of the female, is used during the Amplexus to propel the mating couple to a secluded location. In terrestrial species, the tail moves to counterbalance the animal as it runs, while in the arboreal salamander and other tree-climbing species, it is Prehensile tail. The tail is also used by certain plethodontid salamanders that can jump, to help launch themselves into the air. The tail is used in courtship and as a storage organ for proteins and lipids. It also functions as a defense against predation, when it may be lashed at the attacker or Autotomy when grabbed. Unlike frogs, an adult salamander is able to regenerate limbs and its tail when these are lost.
Mucous gland in the skin discharge mucus which keeps the skin moist, an important factor in skin respiration and thermoregulation. The sticky layer helps protect against bacterial infections and molds, reduces friction when swimming, and makes the animal slippery and more difficult for predators to catch. Granular glands scattered on the upper surface, particularly the head, back, and tail, produce repellent or toxic secretions. Some salamander toxins are particularly potent. The rough-skinned newt ( Taricha granulosa) produces the neurotoxin tetrodotoxin, the most toxic nonprotein substance known. Handling the newts does no harm, but ingestion of even a minute fragment of skin is deadly. In feeding trials, fish, frogs, reptiles, birds, and mammals were all found to be susceptible.
Mature adults of some salamander species have "nuptial" glandular tissue in their , at the base of their tails, on their heads or under their chins. Some females release pheromone, possibly from the ventral cloacal gland, to attract males, but males do not seem to use pheromones for this purpose. In some Plethodontidae, males have conspicuous mental glands on the chin which are pressed against the females' nostrils during the courtship ritual. They may function to speed up the mating process, reducing the risk of its being disrupted by a predator or rival male. The gland at the base of the tail in Plethodon cinereus is used to mark fecal pellets to proclaim territorial ownership.
When present in adult salamanders, lungs vary greatly among different species in size and structure. In aquatic, cold-water species like the torrent salamanders ( Rhyacotriton), the lungs are very small with smooth walls, while species living in warm water with little dissolved oxygen, such as the lesser siren ( Siren intermedia), have large lungs with convoluted surfaces. In the lungless salamanders (family Plethodontidae and the clawed salamanders in the family of Asiatic salamanders), no lungs or gills are present, and gas exchange mostly takes place through the skin, known as cutaneous respiration, supplemented by the tissues lining the mouth. To facilitate this, these salamanders have a dense network of blood vessels just under the skin and in the mouth.Cogger & Zweifel (1998), pp. 74–75.
In the , metamorphosis is incomplete, and they retain one pair of as adults, with fully functioning internal lungs. Some species that lack lungs respire through gills. In most cases, these are external gills, visible as tufts on either side of the head. Some terrestrial salamanders have lungs used in respiration, although these are simple and sac-like, unlike the more complex organs found in . Many species, such as the olm, have both lungs and gills as adults.
In the Necturus, external gills begin to form as a means of combating hypoxia in the egg as egg yolk is converted into metabolically active tissue. Molecular changes in the mudpuppy during post-embryonic development primarily due to the thyroid gland prevent the internalization of the external gills as seen in most salamanders that undergo metamorphosis. The external gills seen in salamanders differs greatly from that of amphibians with internalized gills. Unlike amphibians with internalized gills which typically rely on the changing of pressures within the buccal and pharyngeal cavities to ensure diffusion of oxygen onto the gill curtain, neotenic salamanders such as Necturus use specified musculature, such as the levatores arcuum, to move external gills to keep the respiratory surfaces constantly in contact with new oxygenated water.
Most species of salamander have small teeth in both their upper and lower jaws. Unlike , even the larvae of salamanders possess these teeth. Although larval teeth are shaped like pointed cones, the teeth of adults are adapted to enable them to readily grasp prey. The crown, which has two cusps (bicuspid), is attached to a pedicel by fibers. The joint formed between the bicuspid and the pedicel is partially flexible, as it can bend inward, but not outward. When struggling prey is advanced into the salamander's mouth, the teeth tips relax and bend in the same direction, encouraging movement toward the throat, and resisting the prey's escape.Kardong (2009), pp. 505–506. Many salamanders have patches of teeth attached to the vomer and the in the roof of the mouth, and these help to retain prey. All types of teeth are resorbed and replaced at intervals throughout the animal's life.Stebbins & Cohen (1995) pp. 57–58
A terrestrial salamander catches its prey by flicking out its sticky tongue in an action that takes less than half a second. In some species, the tongue is attached anteriorly to the floor of the mouth, while in others, it is mounted on a pedicel. It is rendered sticky by secretions of mucus from glands in its tip and on the roof of the mouth.Stebbins & Cohen (1995) pp. 58–60 High-speed cinematography shows how the tiger salamander ( Ambystoma tigrinum) positions itself with its snout close to its prey. Its mouth then gapes widely, the lower jaw remains stationary, and the tongue bulges and changes shape as it shoots forward. The protruded tongue has a central depression, and the rim of this collapses inward as the target is struck, trapping the prey in a mucus-laden trough. Here it is held while the animal's neck is flexed, the tongue retracted and jaws closed. Large or resistant prey is retained by the teeth while repeated protrusions and retractions of the tongue draw it in. Swallowing involves alternate contraction and relaxation of muscles in the throat, assisted by depression of the eyeballs into the roof of the mouth. Many lungless salamanders of the family Plethodontidae have more elaborate feeding methods. Muscles surrounding the hyoid bone contract to store elastic energy in springy connective tissue, and actually "shoot" the hyoid bone out of the mouth, thus elongating the tongue. Muscles that originate in the pelvic region and insert in the tongue are used to reel the tongue and the hyoid back to their original positions.
An aquatic salamander lacks muscles in the tongue, and captures its prey in an entirely different manner. It grabs the food item, grasps it with its teeth, and adopts a kind of inertial feeding. This involves tossing its head about, drawing water sharply in and out of its mouth, and snapping its jaws, all of which tend to tear and macerate the prey, which is then swallowed.
Though frequently feeding on slow-moving animals like snails, shrimps and , sirenids are unique among salamanders for having developed herbivory speciations, such as beak-like jaw ends and extensive intestines. They feed on algae and other soft-plants in the wild, and easily eat offered lettuce.
The Iberian ribbed newt ( Pleurodeles waltl) has another method of deterring aggressors. Its skin exudes a poisonous, viscous fluid and at the same time, the newt rotates its sharply pointed ribs through an angle between 27 and 92°, and adopts an inflated posture. This action causes the ribs to puncture the body wall, each rib protruding through an orange wart arranged in a lateral row. This may provide an aposematic signal that makes the spines more visible. When the danger has passed, the ribs retract and the skin heals.
The oldest known total-group (Caudata) salamander is Triassurus from the Triassic of Kyrgyzstan. Further salamander fossils are known from the Middle Jurassic of England, Scotland, China, and Kazakhstan. The oldest known crown-group salamander (Urodela) remains uncertain but recent analyses suggest it is Valdotriton from the Late Jurassic of Spain.
Salamanders are found only in the Holarctic and Neotropical regions, not reaching south of the Mediterranean Basin, the Himalayas, or in South America the Amazon Basin. They do not extend north of the Arctic tree line, with the northernmost Asian species, Salamandrella keyserlingii, which can survive long-term freezing at −55 °C, occurring in the Siberian larch forests of Sakha Republic and the most northerly species in North America, Ambystoma laterale, reaching no farther north than Labrador and Taricha granulosa not beyond the Alaska Panhandle. They had an exclusively distribution until Bolitoglossa invaded South America from Central America, probably by the start of the Early Miocene, about 23 million years ago. They also lived on the Caribbean Islands during the early Miocene epoch, confirmed by the discovery of Palaeoplethodon hispaniolae, found trapped in amber in the Dominican Republic. Vertebrae fossils recovered from the Murgon fossil site have been tentatively attributed to that of a Salamander, though its true identity is disputed. If the vertebrae truly belong to a Salamander, they would represent the only Salamanders in Australia.
There are about 760 living species of salamander. One-third of the known salamander species are found in North America. The highest concentration of these is found in the Appalachian Mountains region, where the Plethodontidae are thought to have originated in mountain streams. Here, vegetation zones and proximity to water are of greater importance than altitude. Only species that adopted a more terrestrial mode of life have been able to disperse to other localities. The northern slimy salamander ( Plethodon glutinosus) has a wide range and occupies a habitat similar to that of the southern gray-cheeked salamander ( Plethodon metcalfi). The latter is restricted to the slightly cooler and wetter conditions in north-facing cove forests in the southern Appalachians, and to higher elevations above 900 m (3,000 ft), while the former is more adaptable, and would be perfectly able to inhabit these locations, but some unknown factor seems to prevent the two species from co-existing.
One species, the Anderson's salamander, is one of the few species of living amphibians to occur in brackish or salt water.Brad Shaffer; Oscar Flores-Villela; Gabriela Parra-Olea; David Wake (2004). "Ambystoma andersoni". IUCN Red List of Threatened Species. Version 2013.2. International Union for Conservation of Nature
Except for terrestrial species in the three families Plethodontidae, Ambystomatidae, and Salamandridae, salamanders mate in water. The mating varies from courtship between a single male and female to explosive group breeding. In the clade Salamandroidea, which makes up about 90% of all species, fertilization is internal. As a general rule, salamanders with internal fertilization have indirect sperm transfer, but in species like the Sardinian brook salamander, the Corsican brook salamander, the Caucasian salamander and the Pyrenean brook salamander, the male transfers his sperm directly into the female cloaca. For the species with indirect sperm transfer, the male deposits a spermatophore on the ground or in the water according to species, and the female picks this up with her vent. The spermatophore has a packet of sperm supported on a conical gelatinous base, and often an elaborate courtship behavior is involved in its deposition and collection. Once inside the cloaca, the spermatozoa move to the spermatheca, one or more chambers in the roof of the cloaca, where they are stored for sometimes lengthy periods until the eggs are laid. In the Asiatic salamanders, the and Sirenidae, which are the most primitive groups, the fertilization is external. In a reproductive process similar to that of typical frogs, the male releases sperm onto the egg mass. These salamanders also have males that exhibit parental care, which otherwise only occur in females with internal fertilization.
Three different types of egg deposition occur. Ambystoma and Taricha spp. spawn large numbers of small eggs in quiet ponds where many large predators are unlikely. Most dusky salamanders ( Desmognathus) and Pacific giant salamanders ( Dicamptodon) lay smaller batches of medium-sized eggs in a concealed site in flowing water, and these are usually guarded by an adult, normally the female. Many of the tropical climbing salamanders ( Bolitoglossa) and lungless salamanders (Plethodontinae) lay a small number of large eggs on land in a well-hidden spot, where they are also guarded by the mother. Some species such as the Salamandra ( Salamandra) are ovoviviparous, with the female retaining the eggs inside her body until they hatch, either into larvae to be deposited in a water body, or into fully formed juveniles.
In temperate regions, reproduction is usually seasonal and salamanders may migrate to breeding grounds. Males usually arrive first and in some instances set up territories. Typically, a larval stage follows in which the organism is fully aquatic. The tadpole has three pairs of external gills, no eyelids, a long body, a laterally flattened tail with dorsal and ventral fins and in some species limb-buds or limbs. Pond-type larvae may have a pair of rod-like balancers on either side of the head, long gill filaments and broad fins. Stream-type larvae are more slender with short gill filaments—in Rhyacotriton and Onychodactylus, and some species in Batrachuperus, the gills and gill rakers are extremely reduced, Reproductive Biology and Phylogeny of Urodela narrower fins and no balancers, but instead have hind limbs already developed when they hatch.Stebbins & Cohen (1995) pp. 175–179 The tadpoles are carnivorous and the larval stage may last from days to years, depending on species. Sometimes this stage is completely bypassed, and the eggs of most lungless salamanders (Plethodontidae) develop directly into miniature versions of the adult without an intervening larval stage.
By the end of the larval stage, the tadpoles already have limbs and metamorphosis takes place normally. In salamanders, this occurs over a short period of time and involves the closing of the gill slits and the loss of structures such as gills and tail fins that are not required as adults. At the same time, eyelids develop, the mouth becomes wider, a tongue appears, and teeth are formed. The aqueous larva emerges onto land as a terrestrial adult.
Not all species of salamanders follow this path. Neoteny, also known as paedomorphosis, has been observed in all salamander families, and may be universally possible in all salamander species. In this state, an individual may retain gills or other juvenile features while attaining reproductive maturity. The changes that take place at metamorphosis are under the control of and in obligate neotenes such as the axolotl ( Ambystoma mexicanum), the tissues are seemingly unresponsive to the hormones. In other species, the changes may not be triggered because of underactivity of the hypothalamus-pituitary-thyroid mechanism which may occur when conditions in the terrestrial environment are too inhospitable. This may be due to cold or wildly fluctuating temperatures, aridity, lack of food, lack of cover, or insufficient iodine for the formation of thyroid hormones. Genetics may also play a part. The larvae of tiger salamanders ( Ambystoma tigrinum), for example, develop limbs soon after hatching and in seasonal pools promptly undergo metamorphosis. Other larvae, especially in permanent pools and warmer climates, may not undergo metamorphosis until fully adult in size. Other populations in colder climates may not metamorphose at all, and become sexually mature while in their larval forms. Neoteny allows the species to survive even when the terrestrial environment is too harsh for the adults to thrive on land.
Various conservation initiatives are being attempted around the world. The Chinese giant salamander, at 1.8 m (6 ft) the largest amphibian in the world, is critically endangered, as it is collected for food and for use in traditional Chinese medicine. An environmental education programme is being undertaken to encourage sustainable management of wild populations in the Qinling Mountains and captive breeding programmes have been set up. The hellbender is another large, long-lived species with dwindling numbers and fewer juveniles reaching maturity than previously. Another alarming finding is the increase in abnormalities in up to 90% of the hellbender population in the Spring River watershed in Arkansas. Habitat loss, silting of streams, pollution and disease have all been implicated in the decline and a captive breeding programme at Saint Louis Zoo has been successfully established. Of the 20 species of minute salamanders ( Thorius spp.) in Mexico, half are believed to have become extinct and most of the others are critically endangered. Specific reasons for the decline may include climate change, chytridiomycosis, or volcanic activity, but the main threat is habitat destruction as logging, agricultural activities, and human settlement reduce their often tiny, fragmented ranges. Survey work is being undertaken to assess the status of these salamanders, and to better understand the factors involved in their population declines, with a view to taking action.
Ambystoma mexicanum, an aquatic salamander, is a species protected under the Mexican UMA (Unit for Management and conservation of wildlife) as of April 1994. Another detrimental factor is that the axolotl lost their role as a top predator since the introduction of locally exotic species such as Nile tilapia and carp. Tilapia and carp directly compete with axolotls by consuming their eggs, larvae, and juveniles. Climate change has also immensely affected axolotls and their populations throughout the southern Mexico area. Due to its proximity to Mexico City, officials are currently working on programs at Lake Xochimilco to bring in tourism and educate the local population on the restoration of the natural habitat of these creatures. This proximity is a large factor that has impacted the survival of the axolotl, as the city has expanded to take over the Xochimilco region in order to make use of its resources for water and provision and sewage. It is farmed for use in research facilities and so may one day return to its natural habitat. The recent decline in population has substantially impacted genetic diversity among populations, making it difficult to further progress scientifically. Some genetic indiversity due to paedeomorphism in Ambystoma species such as the axolotl does not account for the overall lack of diversity. Evidence points toward a historical bottlenecking of Ambystoma that contributes to the variation issues and no longer a large genetic pool for it to pull from, thus raising concern for inbreeding due to lack of gene flow. One way researchers are looking into maintaining genetic diversity within the population is via cryopreservation of the spermatophores from the male axolotl. It is a safe and non-invasive method that requires the collection of the spermatophores and places them into a deep freeze for preservation. Most importantly, they have found that there is only limited damage done to the spermatophores upon thawing and thus it is a viable option. As of 2013, it is a method that is being used to save not only the axolotl but also numerous other members of the salamander family.
Research is being done on the environmental cues that have to be replicated before captive animals can be persuaded to breed. Common species such as the tiger salamander and the mudpuppy are being given hormones to stimulate the production of sperm and eggs, and the role of arginine vasotocin in courtship behaviour is being investigated. Another line of research is artificial insemination, either in vitro or by inserting spermatophores into the cloacae of females. The results of this research may be used in captive-breeding programmes for endangered species.
Disagreement exists among different authorities as to the definition of the terms Caudata and Urodela. Some maintain that the Urodela should be restricted to the crown group, with the Caudata being used for the total group. Others restrict the name Caudata to the crown group and use Urodela for the total group. The former approach seems to be most widely adopted and is used in this article.
The ten families belonging to Urodela are divided into three suborders. The clade Neocaudata is often used to separate the Cryptobranchoidea and Salamandroidea from the Sirenoidea.
The two groups of extant salamanders are the Cryptobranchoidea (which includes Asiatic and giant salamanders) and the Salamandroidea (which includes all other living salamanders), also known as Diadectosalamandroidei. Both groups are known from the Middle-Late Jurassic of China. the former being exemplified by Chunerpeton tianyiensis, Pangerpeton sinensis, Jeholotriton paradoxus, Regalerpeton, Liaoxitriton and Iridotriton, and the latter by Beiyanerpeton jianpingensis. By the Upper Cretaceous, most or all of the living salamander families had probably appeared.
The following cladogram shows the relationships between salamander families based on the molecular analysis of Pyron and Wiens (2011). The position of the Sirenidae is disputed, but the position as sister to the Salamandroidea best fits with the molecular and fossil evidence.
Their giant genomes have strongly affected their physiology. This includes their skeletal and circulatory systems, and have led to a simplified brain, weak heart and slow metabolism. The cell mechanisms that prevent transposons from accumulating seem to be partially defect in salamanders. Some species with the largest genomes have lost the ability to go through metamorphosis. The development and growth of their body is slower when compared to that of their ancestors, and stops at a certain age, leaving them with embryonic traits. The salamander's tissues contain cells that differentiate slowly, weakly, or not at all, due to intron delay. This gives them regenerative properties, notably in parts of the face, eyes, lungs, liver, heart, and even the spinal cord and brain. As such, they have been described as "walking bags of stem cells". Research has also shown that they do not develop typical signs of aging and do not accumulate age-related diseases like cancer. Benefits of "Zombie" Cells: Senescent Cells Aid Regeneration in Salamanders
The association of the salamander with fire appeared first in Antiquity with Aristotle ( History of Animals 5, 17) and with Pliny the Elder writing in his Natural History (10, 86) that "A salamander is so cold that it puts out fire on contact. It vomits from its mouth a milky liquid; if this liquid touches any part of the human body, it causes all the hair to fall off, and the skin to change color and break out in a rash." The ability to put out fire is repeated by Saint Augustine in the fifth century and Isidore of Seville in the seventh century.
The mythical ruler Prester John supposedly had a robe made from alleged salamander hair, in fact asbestos fibre, already known by ancient Greece and Rome (the linum vivum of Pliny the Elder Naturalis historia, 19, 4). The "Emperor of India" possessed a suit made from a thousand skins; Pope Alexander III had a tunic which he valued highly and William Caxton (1481) wrote: "This Salemandre berithe wulle, of which is made cloth and gyrdles that may not brenne in the fyre." The salamander was said to be so toxic that by twining around a tree, it could poison the fruit and so kill any who ate them and by falling into a well, could kill all who drank from it.
Wealthy Persians amazed guests by cleaning a cloth by exposing it to fire. For example, according to Tabari, one of the curious items belonging to Khosrow II Parviz, the great Sassanian king (r. 590–628), was a napkin () that he cleaned simply by throwing it into fire. Such cloth is believed to have been made of asbestos imported over the Hindu Kush.New Encyclopædia Britannica (2003), vol. 6, p. 843 According to Biruni in his book Gems, any cloths made of asbestos (, āzarshost) were called shostakeh ().Dehkhoda Persian Dictionary Some Persians believed the fiber was the fur of an animal called the samandar (), which lived in fire and died when exposed to water; A Brief History of Asbestos Use and Associated Health Risks EnvironmentalChemistry.com website this may be where the belief originated that the salamander could tolerate fire. Charlemagne, the first Holy Roman Emperor (800–814), is also said to have possessed such a tablecloth.
Marco Polo recounts having been shown, in a place he calls Ghinghin talas, "a good vein from which the cloth which we call of salamander, which cannot be burnt if it is thrown into the fire, is made ..."
In his autobiography, Benvenuto Cellini relates:
The Japanese giant salamander has been the subject of legend and artwork in Japan (e.g. the ukiyo-e work by Utagawa Kuniyoshi). The well-known Japanese mythological creature known as the kappa may be inspired by this salamander.
The spotted salamander (Amblystoma maculatum) lives in a symbiotic relationship with a green algae known as Oophila amblystomatis. The algal cells make their way into tissue cells throughout the embryo's body and appears to avoid rejection by activating genes which suppress the embryo's immune response. A mechanism that could be used in treatment for autoimmune diseases in humans. Symbiotic salamander/algae relationship may inspire new drugs
Later research by Slovenian anthropologist Miha Kozorog (University of Ljubljana) paints a very different picture—Salamander in brandy appears to have been traditionally seen as an adulterant, one which caused ill health. It was also used as a term of slander.
Skin
Senses
Smell
Vision
Hearing
Vocalization
Respiration
Feeding and diet
Defense
Aposematism
Camouflage and mimicry
Autotomy
Distribution and habitat
Reproduction and development
Conservation
Taxonomy
Cryptobranchoidea (Giant salamanders) Salamandroidea (Advanced salamanders) Sirenoidea (Sirens)
Phylogeny and evolution
Genome and genetics
In human society
Myth and legend
Medical research
Brandy
Citations
Cited texts
External links
|
|