The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distribution of the residence time in the set, which is known as residence time distribution (RTD), or in terms of its average, known as mean residence time.
Residence time plays an important role in chemistry and especially in environmental science and pharmacology. Under the name lead time or waiting time it plays a central role respectively in supply chain management and queueing theory, where the material that flows is usually discrete instead of continuous.
At the moment a particle leaves the control volume, its age is the total time that the particle has spent inside the control volume, which is known as its residence time. The frequency of occurrence of the age in the set of all the particles that are leaving the control volume at time is quantified by means of the residence time distribution, also known as exit age distribution .
Both distributions are positive and have by definition unitary integrals along the age:
In the case of steady flow, the distributions are assumed to be independent of time, that is , which may allow to redefine the distributions as simple functions of the age only.
If the flow is steady (but a generalization to non-steady flow is possible) and is conservative, then the exit age distribution and the internal age distribution can be related one to the other:
Distributions other than and can be usually traced back to them. For example, the fraction of particles leaving the control volume at time with an age greater or equal than is quantified by means of the washout function , that is the complementary to one of the cumulative exit age distribution:
The mean residence time or mean transit time, that is the mean age of all the particles leaving the control volume at time t, is the first moment of the residence time distribution:
The mean age and the mean transit time generally have different values, even in stationary conditions:
The residence time of a specific compound in a mixture equals the turnover time (that of the compound, as well as that of the mixture) only if the compound does not take part in any chemical reaction (otherwise its flow is not conservative) and its concentration is uniform.
Although the equivalence between the residence time and the ratio does not hold if the flow is not stationary or it is not conservative, it does hold on average if the flow is steady and conservative on average, and not necessarily at any instant. Under such conditions, which are common in queueing theory and supply chain management, the relation is known as Little's Law.
The RTD of a real reactor deviates from that of an ideal reactor, depending on the hydrodynamics within the vessel. A non-zero variance indicates that there is some dispersion along the path of the fluid, which may be attributed to turbulence, a non-uniform velocity profile, or diffusion. If the mean of the distribution is earlier than the expected time T it indicates that there is Stagnation point within the vessel. If the RTD curve shows more than one main peak it may indicate channeling, parallel paths to the exit, or strong internal circulation.
In PFRs, reactants enter the reactor at one end and react as they move down the reactor. Consequently, the reaction rate is dependent on the concentrations which vary along the reactor requiring the inverse of the reaction rate to be integrated over the fractional conversion.
In reality, it is impossible to obtain such rapid mixing, as there is necessarily a delay between any molecule passing through the inlet and making its way to the outlet, and hence the RTD of a real reactor will deviate from the ideal exponential decay, especially in the case of large reactors. For example, there will be some finite delay before E reaches its maximum value and the length of the delay will reflect the rate of mass transfer within the reactor. Just as was noted for a plug-flow reactor, an early mean will indicate some stagnant fluid within the vessel, while the presence of multiple peaks could indicate channeling, parallel paths to the exit, or strong internal circulation. Short-circuiting fluid within the reactor would appear in an RTD curve as a small pulse of concentrated tracer that reaches the outlet shortly after injection.
Reactants continuously enter and leave a tank where they are mixed. Consequently, the reaction proceeds at a rate dependent on the outlet concentration:
In all of these equations : is the consumption rate of A, a reactant. This is equal to the rate expression A is involved in. The rate expression is often related to the fractional conversion both through the consumption of A and through any k changes through temperature changes that are dependent on conversion.
Plugging this into the design equations results in the following equations:
Generally, when reactions take place in the liquid and solid phases the change in volume due to reaction is not significant enough that it needs to be taken into account. Reactions in the gas phase often have significant changes in volume and in these cases one should use these modified equations.
The step- and pulse-responses of a reactor are related by the following:
A step experiment is often easier to perform than a pulse experiment, but it tends to smooth over some of the details that a pulse response could show. It is easy to numerically integrate an experimental pulse response to obtain a very high-quality estimate of the step response, but the reverse is not the case because any noise in the concentration measurement will be amplified by numeric differentiation.
If the reaction is more complicated, then the output is not uniquely determined by the RTD. It also depends on the degree of micromixing, the mixing between molecules that entered at different times. If there is no mixing, the system is said to be completely segregated, and the output can be given in the form
The RTD of chemical reactors can be obtained by CFD simulations. The very same procedure that is performed in experiments can be followed. A pulse of inert tracer particles (during a very short time) is injected into the reactor. The linear motion of tracer particles is governed by Newton's second law of motion and a one-way coupling is stablished between fluid and tracers. In one-way coupling, fluid affects tracer motion by drag force while tracer does not affect fluid. The size and density of tracers are chosen so small that the Stokes number of tracers becomes very small. In this way, tracer particles exactly follow the same path as the fluid does.
Groundwater flow is important parameter for consideration in the design of waste rock basins for mining operations. Waste rock is heterogeneous material with particles varying from boulders to clay-sized particles, and it contains sulfidic pollutants which must be controlled such that they do not compromise the quality of the water table and also so the runoff does not create environmental problems in the surrounding areas. Aquitards are clay zones that can have such a degree of impermeability that they partially or completely retard water flow. These clay lenses can slow or stop seepage into the water table, although if an aquitard is fractured and contaminated then it can become a long-term source of groundwater contamination due to its low permeability and high HRT.
Disinfection is the last step in the tertiary treatment of wastewater or drinking water. The types of pathogens that occur in untreated water include those that are easily killed like bacteria and viruses, and those that are more robust such as protozoa and Microbial cyst. The disinfection chamber must have a long enough HRT to kill or deactivate all of them.
In vacuum technology, the residence time of gases on the surfaces of a vacuum chamber can determine the pressure due to outgassing. If the chamber can be heated, the above equation shows that the gases can be "baked out"; but if not, then surfaces with a low residence time are needed to achieve ultra-high vacuums.
Ground water residence time applications are useful for determining the amount of time it will take for a pollutant to reach and contaminate a ground water drinking water source and at what concentration it will arrive. This can also work to the opposite effect to determine how long until a ground water source becomes uncontaminated via inflow, outflow, and volume. The residence time of lakes and streams is important as well to determine the concentration of pollutants in a lake and how this may affect the local population and marine life.
Hydrology, the study of water, discusses the water budget in terms of residence time. The amount of time that water spends in each different stage of life (glacier, atmosphere, ocean, lake, stream, river), is used to show the relation of all of the water on the earth and how it relates in its different forms.
Residence time can also refer to the amount of time that a drug spends in the part of the body where it needs to be absorbed. The longer the residence time, the more of it can be absorbed. If the drug is delivered in an oral form and destined for the upper intestines, it usually moves with food and its residence time is roughly that of the food. This generally allows 3 to 8 hours for absorption.
Biofuel cells utilize the metabolic processes of anodophiles (electronegative bacteria) to convert chemical energy from organic matter into electricity. A biofuel cell mechanism consists of an anode and a cathode that are separated by an internal proton exchange membrane (PEM) and connected in an external circuit with an external load. Anodophiles grow on the anode and consume biodegradable organic molecules to produce electrons, protons, and carbon dioxide gas, and as the electrons travel through the circuit they feed the external load. The HRT for this application is the rate at which the feed molecules are passed through the anodic chamber. This can be quantified by dividing the volume of the anodic chamber by the rate at which the feed solution is passed into the chamber. The hydraulic residence time (HRT) affects the substrate loading rate of the microorganisms that the anodophiles consume, which affects the electrical output. Longer HRTs reduce substrate loading in the anodic chamber which can lead to reduced anodophile population and performance when there is a deficiency of nutrients. Shorter HRTs support the development of non- bacteria which can reduce the Coulombic efficiency electrochemical performance of the fuel cell if the anodophiles must compete for resources or if they do not have ample time to effectively degrade nutrients.
\frac{\partial I}{\partial t}=\frac{dm}{dt}=0 & \\[4pt]
f_\text{in}=f_\text{out}=f &
\end{aligned}\ \right\} \implies fE=-m\frac{\partial I}{\partial \tau}
Averages
Mean age and mean residence time
Turnover time
\frac{\partial I}{\partial t}=\frac{dm}{dt}=0 & \\
f_\text{in}=f_\text{out}=f &
\end{aligned}\ \right\} \implies \tau_t = \frac{m}{f}
This ratio is commonly known as the turnover time or flushing time. When applied to liquids, it is also known as the hydraulic retention time ( HRT), hydraulic residence time or hydraulic detention time.
Simple flow models
Plug flow reactor
The mean is T and the variance is zero.
Batch reactor
Continuous stirred-tank reactor
Where; the mean is T and the variance is 1. A notable difference from the plug flow reactor is that material introduced into the system will never completely leave it.
Laminar flow reactor
0 & \tau \leq T/2\\[5pt]
\dfrac{T^2}{2 \tau^3} & \tau > T/2.
\end{cases}
The variance is infinite. In a real reactor, diffusion will eventually mix the layers so that the tail of the RTD becomes exponential and the variance finite; but laminar flow reactors can have variance greater than 1, the maximum for CTSD reactors.
Recycle reactors
Variable volume reactions
Batch
Plug flow reactors
Continuous stirred-tank reactors
Determining the RTD experimentally
Pulse experiments
Step experiments
Applications
Chemical reactors
for a rate constant . Given a RTD, the average probability is equal to the ratio of the concentration of the component before and after:
For given RTD, there is an upper limit on the amount of mixing that can occur, called the maximum mixedness, and this determines the achievable yield. A continuous stirred-tank reactor can be anywhere in the spectrum between completely segregated and perfect mixing.
Groundwater flow
Water treatment
Surface science
where is the gas constant, is an activation energy, and is a prefactor that is correlated with the vibration times of the surface atoms (generally of the order of seconds).
Environmental
Pharmacology
Biochemical
See also
Further reading
External links
|
|