In statistics, quasi-likelihood methods are used to estimate parameters in a statistical model when exact likelihood methods, for example maximum likelihood estimation, are computationally infeasible. Due to the wrong likelihood being used, quasi-likelihood estimators lose asymptotic efficiency compared to, e.g., maximum likelihood estimators. Under broadly applicable conditions, quasi-likelihood estimators are consistent and asymptotically normal. The asymptotic covariance matrix can be obtained using the so-called sandwich estimator. Examples of quasi-likelihood methods include the generalized estimating equations and pairwise likelihood approaches.
Instead of specifying a probability distribution for the data, only a relationship between the mean and the variance is specified in the form of a variance function giving the variance as a function of the mean. Generally, this function is allowed to include a multiplicative factor known as the overdispersion parameter or scale parameter that is estimated from the data. Most commonly, the variance function is of a form such that fixing the overdispersion parameter at unity results in the variance-mean relationship of an actual probability distribution such as the binomial or Poisson. (For formulae, see the binomial data example and count data example under generalized linear models.)
|
|